Visualizing Network Structures in the Food, Energy, and Water Nexus

157047-Thumbnail Image.png
Description
In recent years, the food, energy, and water (FEW) nexus has become a topic of considerable importance and has spurred research in many scientific and technical fields. This increased interest stems from the high level, and broad area, of impact

In recent years, the food, energy, and water (FEW) nexus has become a topic of considerable importance and has spurred research in many scientific and technical fields. This increased interest stems from the high level, and broad area, of impact that could occur in the long term if the interactions between these complex FEW sectors are incorrectly or only partially defined. For this reason, a significant amount of interdisciplinary collaboration is needed to accurately define these interactions and produce viable solutions to help sustain and secure resources within these sectors. Providing tools that effectively promote interdisciplinary collaboration would allow for the development of a better understanding of FEW nexus interactions, support FEW policy-making under uncertainty, facilitate identification of critical design requirements for FEW visualizations, and encourage proactive FEW visualization design.

The goal of this research will be the completion of 3 primary objectives: (i) specify visualization design requirements relating to the FEW nexus; (ii) develop visualization approaches for the FEW nexus; and (iii) provide a comparison of current FEW visualization approaches against the proposed visualization approach. These objectives will be accomplished by reviewing graph-based visualization, network evolution, and visual analysis of volume data tasks, discussion with domain experts, examination of currently used visualization methods in FEW research, and conduction of a user study. This will provide a more thorough and representative depiction of the FEW nexus, as well as a basis for further research in the area of FEW visualization. This research will enhance collaboration between policymakers and domain experts in an attempt to encourage in-depth nexus research that will help support informed policy-making and promote future resource security.
Date Created
2019
Agent

On the Statistical and Scaling Properties of Observed and Simulated Soil Moisture

156960-Thumbnail Image.png
Description
Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction,

Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction, drought monitoring, and weather forecasting. Empirical evidences have demonstrated the existence of emergent relationships and scale invariance properties in θ fields collected from the ground and airborne sensors during intensive field campaigns, mostly in natural landscapes. This dissertation advances the characterization of these relations and statistical properties of θ by (1) analyzing the role of irrigation, and (2) investigating how these properties change in time and across different landscape conditions through θ outputs of a distributed hydrologic model. First, θ observations from two field campaigns in Australia are used to explore how the presence of irrigated fields modifies the spatial distribution of θ and the associated scale invariance properties. Results reveal that the impact of irrigation is larger in drier regions or conditions, where irrigation creates a drastic contrast with the surrounding areas. Second, a physically-based distributed hydrologic model is applied in a regional basin in northern Mexico to generate hyperresolution θ fields, which are useful to conduct analyses in regions and times where θ has not been monitored. For this aim, strategies are proposed to address data, model validation, and computational challenges associated with hyperresolution hydrologic simulations. Third, analyses are carried out to investigate whether the hyperresolution simulated θ fields reproduce the statistical and scaling properties observed from the ground or remote sensors. Results confirm that (i) the relations between spatial mean and standard deviation of θ derived from the model outputs are very similar to those observed in other areas, and (ii) simulated θ fields exhibit the scale invariance properties that are consistent with those analyzed from aircraft-derived estimates. The simulated θ fields are then used to explore the influence of physical controls on the statistical properties, finding that soil properties significantly affect spatial variability and multifractality. The knowledge acquired through this dissertation provides insights on θ statistical properties in regions and landscape conditions that were never investigated before; supports the refinement of the calibration of multifractal downscaling models; and contributes to the improvement of hyperresolution hydrologic modeling.
Date Created
2018
Agent

Meta-analysis of error sources in the determination of micro- and nanoplastics

156925-Thumbnail Image.png
Description
The occurrence of micro-and nanoplastic (MNP) debris in the environment is a research area of considerable public health concern. Various combinations of methods for extraction, isolation, and quantification of MNP have been applied but literature studies evaluating the appropriateness and

The occurrence of micro-and nanoplastic (MNP) debris in the environment is a research area of considerable public health concern. Various combinations of methods for extraction, isolation, and quantification of MNP have been applied but literature studies evaluating the appropriateness and efficacy of these protocols are lacking. A meta-analysis of the literature (n=134; years 2010-2017) was conducted to inventory and assess the appropriateness of methodologies employed. Some 30.6% of studies employed visual identification only, which carried a calculated misidentification error of 25.8-74.2%. An additional 6.7% of studies reported counts for particles smaller than the cutoff value of the selected collection pore size, and 9.7% of studies utilized extraction solution densities which exclude some of the polymers commonly occurring in the environments investigated. A composite value of data vulnerability of 43.3% was determined for the sample, indicating considerable weaknesses in the robustness of information available on MNP occurrence and type. Additionally, the oxidizing solutions documented in the literature frequently were deemed unsuccessful in removing interfering organic matter. Whereas nanoplastics measuring <1 µm in diameter are likely principal drivers of health risk, polymer fragments reported on in the literature are much larger, measuring 10+ µm in diameter due to lack of standardized methods. Thus, current inventories of MNP in the environmental MNP feature data quality concerns that should be addressed moving forward by using more robust and standardized techniques for sampling, processing and polymer identification to improve data quality and avoid the risk of misclassification.
Date Created
2018
Agent

Stochastic optimization for feasibility determination: an application to water pump operation in water distribution network

156345-Thumbnail Image.png
Description
The energy consumption by public drinking water and wastewater utilities represent up to 30%-40% of a municipality energy bill. The largest energy consumption is used to operate motors for pumping. As a result, the engineering and control community develop the

The energy consumption by public drinking water and wastewater utilities represent up to 30%-40% of a municipality energy bill. The largest energy consumption is used to operate motors for pumping. As a result, the engineering and control community develop the Variable Speed Pumps (VSPs) which allow for regulating valves in the network instead of the traditional binary ON/OFF pumps. Potentially, VSPs save up to 90% of annual energy cost compared to the binary pump. The control problem has been tackled in the literature as “Pump Scheduling Optimization” (PSO) with a main focus on the cost minimization. Nonetheless, engineering literature is mostly concerned with the problem of understanding “healthy working conditions” (e.g., leakages, breakages) for a water infrastructure rather than the costs. This is very critical because if we operate a network under stress, it may satisfy the demand at present but will likely hinder network functionality in the future.

This research addresses the problem of analyzing working conditions of large water systems by means of a detailed hydraulic simulation model (e.g., EPANet) to gain insights into feasibility with respect to pressure, tank level, etc. This work presents a new framework called Feasible Set Approximation – Probabilistic Branch and Bound (FSA-PBnB) for the definition and determination of feasible solutions in terms of pumps regulation. We propose the concept of feasibility distance, which is measured as the distance of the current solution from the feasibility frontier to estimate the distribution of the feasibility values across the solution space. Based on this estimate, pruning the infeasible regions and maintaining the feasible regions are proposed to identify the desired feasible solutions. We test the proposed algorithm with both theoretical and real water networks. The results demonstrate that FSA-PBnB has the capability to identify the feasibility profile in an efficient way. Additionally, with the feasibility distance, we can understand the quality of sub-region in terms of feasibility.

The present work provides a basic feasibility determination framework on the low dimension problems. When FSA-PBnB extends to large scale constraint optimization problems, a more intelligent sampling method may be developed to further reduce the computational effort.
Date Created
2018
Agent

Evaluation of CMIP5 historical simulations in the Colorado River Basin

156248-Thumbnail Image.png
Description
The Colorado River Basin (CRB) is the primary source of water in the

southwestern United States. A key step to reduce the uncertainty of future streamflow

projections in the CRB is to evaluate the performance of historical simulations of General

Circulation Models (GCMs).

The Colorado River Basin (CRB) is the primary source of water in the

southwestern United States. A key step to reduce the uncertainty of future streamflow

projections in the CRB is to evaluate the performance of historical simulations of General

Circulation Models (GCMs). In this study, this challenge is addressed by evaluating the

ability of nineteen GCMs from the Coupled Model Intercomparison Project Phase Five

(CMIP5) and four nested Regional Climate Models (RCMs) in reproducing the statistical

properties of the hydrologic cycle and temperature in the CRB. To capture the transition

from snow-dominated to semiarid regions, analyses are conducted by spatially averaging

the climate variables in four nested sub-basins. Most models overestimate the mean

annual precipitation (P) and underestimate the mean annual temperature (T) at all

locations. While a group of models capture the mean annual runoff at all sub-basins with

different strengths of the hydrological cycle, another set of models overestimate the mean

annual runoff, due to a weak cycle in the evaporation channel. An abrupt increase in the

mean annual T in observed and most of the simulated time series (~0.8 °C) is detected at

all locations despite the lack of any statistically significant monotonic trends for both P

and T. While all models simulate the seasonality of T quite well, the phasing of the

seasonal cycle of P is fairly reproduced in just the upper, snow-dominated sub-basin.

Model performances degrade in the larger sub-basins that include semiarid areas, because

several GCMs are not able to capture the effect of the North American monsoon. Finally,

the relative performances of the climate models in reproducing the climatologies of P and

T are quantified to support future impact studies in the basin.
Date Created
2018
Agent

Tracking chemical indicators of public health in the urban water environment

156161-Thumbnail Image.png
Description
This dissertation focuses on the application of urban metabolism metrology (UMM) to process streams of the natural and built water environment to gauge public health concerning exposure to carcinogenic N-nitrosamines and abuse of narcotics. A survey of sources of exposure

This dissertation focuses on the application of urban metabolism metrology (UMM) to process streams of the natural and built water environment to gauge public health concerning exposure to carcinogenic N-nitrosamines and abuse of narcotics. A survey of sources of exposure to N-nitrosamines in the U.S. population identified contaminated food products (1,900 ± 380 ng/day) as important drivers of attributable cancer risk (Chapter 2). Freshwater sediments in the proximity of U.S. municipal wastewater treatment plants were shown for the first time to harbor carcinogenic N-nitrosamine congeners, including N-nitrosodibutylamine (0.2-3.3 ng/g dw), N-nitrosodiphenylamine (0.2-4.7 ng/g dw), and N-nitrosopyrrolidine (3.4-19.6 ng/g dw) were, with treated wastewater discharge representing one potential factor contributing to the observed contamination (p=0.42) (Chapter 3). Opioid abuse rates in two small midwestern communities were estimated through the application of wastewater-based epidemiology (WBE). Average concentrations of opioids (City 1; City 2) were highest for morphine (713 ± 38, 306 ± 29 ng/L) and varied by for the remainder of the screened analytes. Furthermore, concentrations of the powerful opioid fentanyl (1.7 ± 0.2, 1.0 ± 0.5 ng/L) in wastewater were reported for the first time in the literature for the U.S. (Chapter 4). To gauge narcotic consumption within college-aged adults the WBE process used in Chapter 4 was applied to wastewater collected from a large university in the Southwestern U.S. Estimated narcotics consumption, in units of mg/day/1,000 persons showed the following rank order: cocaine (470 ± 42), heroin (474 ± 32), amphetamine (302 ± 14) and methylphenidate (236 ± 28). Most parental drugs and their respective metabolites showed detection frequencies in campus wastewater of 80% or more, with the notable exception of fentanyl, norfentanyl, buprenorphine, and norbuprenorphine. Estimated consumption of all narcotics, aside from attention-deficit/hyperactivity disorder medication, were higher than values reported in previous U.S. WBE studies for U.S. campuses (Chapter 5). The analyses presented here have identified variation in narcotic consumption habits across different U.S. communities, which can be gauged through UMM. Application of these techniques should be implemented throughout U.S. communities to provide insight into ongoing substance abuse and health issues within a community.
Date Created
2018
Agent

Deep percolation in arid piedmont watersheds and its sensitivity to ecosystem change

156100-Thumbnail Image.png
Description
Population growth within drylands is occurring faster than growth in any other ecologic zone, putting pressure on already stressed water resources. Because the availability of surface water supplies in drylands tends to be highly variable, many of these populations rely

Population growth within drylands is occurring faster than growth in any other ecologic zone, putting pressure on already stressed water resources. Because the availability of surface water supplies in drylands tends to be highly variable, many of these populations rely on groundwater. A critical process contributing to groundwater recharge is the interaction between ephemeral channels and groundwater aquifers. Generally, it has been found that ephemeral channels contribute to groundwater recharge when streamflow infiltrates into the sandy bottoms of channels. This process has traditionally been studied in channels that drain large areas (10s to 100s km2). In this dissertation, I study the interactions between surface water and groundwater via ephemeral channels in a first-order watershed located on an arid piedmont slope within the Jornada Experimental Range (JER) in the Chihuahuan Desert. To achieve this, I utilize a combination of high-resolution observations and computer simulations using a modified hydrologic model to quantify groundwater recharge and shed light on the geomorphic and ecologic processes that affect the rate of recharge. Observational results indicate that runoff generated within the piedmont slope contributes significantly to deep percolation. During the short-term (6 yr) study period, we estimated 385 mm of total percolation, 62 mm/year, or a ratio of percolation to rainfall of 0.25. Based on the instrument network, we identified that percolation occurs inside channel areas when these receive overland sheetflow from hillslopes. By utilizing a modified version of the hydrologic model, TIN-based Real-time Integrated Basin Simulator (tRIBS), that was calibrated and validated using the observational dataset, I quantified the effects of changing watershed properties on groundwater recharge. Distributed model simulations quantify how deep percolation is produced during the streamflow generation process, and indicate that it plays a significant role in moderating the production of streamflow. Sensitivity analyses reveal that hillslope properties control the amount of rainfall necessary to initiate percolation while channel properties control the partitioning of hillslope runoff into streamflow and deep percolation. Synthetic vegetation experiments show that woody plant encroachment leads to increases in both deep percolation and streamflow. Further woody plant encroachment may result in the unexpected enhancement of dryland aquifer sustainability.
Date Created
2017
Agent

Stakeholder Analysis for the Food-Energy-Water Nexus in Phoenix, Arizona: Implications for Nexus Governance

127822-Thumbnail Image.png
Description

Understanding the food-energy-water nexus is necessary to identify risks and inform strategies for nexus governance to support resilient, secure, and sustainable societies. To manage risks and realize efficiencies, we must understand not only how these systems are physically connected but

Understanding the food-energy-water nexus is necessary to identify risks and inform strategies for nexus governance to support resilient, secure, and sustainable societies. To manage risks and realize efficiencies, we must understand not only how these systems are physically connected but also how they are institutionally linked. It is important to understand how actors who make planning, management, and policy decisions understand the relationships among components of the systems. Our question is: How do stakeholders involved in food, energy, and water governance in Phoenix, Arizona understand the nexus and what are the implications for integrated nexus governance? We employ a case study design, generate qualitative data through focus groups and interviews, and conduct a content analysis. While stakeholders in the Phoenix area who are actively engaged in food, energy, and water systems governance appreciate the rationale for nexus thinking, they recognize practical limitations to implementing these concepts. Concept maps of nexus interactions provide one view of system interconnections that be used to complement other ways of knowing the nexus, such as physical infrastructure system diagrams or actor-networks. Stakeholders believe nexus governance could be improved through awareness and education, consensus and collaboration, transparency, economic incentives, working across scales, and incremental reforms.

Date Created
2017-11-29
Agent

On the Nature of Rainfall Intermittency as Revealed by Different Metrics and Sampling Approaches

127856-Thumbnail Image.png
Description

A general consensus on the concept of rainfall intermittency has not yet been reached, and intermittency is often attributed to different aspects of rainfall variability, including the fragmentation of the rainfall support (i.e., the alternation of wet and dry intervals)

A general consensus on the concept of rainfall intermittency has not yet been reached, and intermittency is often attributed to different aspects of rainfall variability, including the fragmentation of the rainfall support (i.e., the alternation of wet and dry intervals) and the strength of intensity fluctuations and bursts. To explore these different aspects, a systematic analysis of rainfall intermittency properties in the time domain is presented using high-resolution (1-min) data recorded by a network of 201 tipping-bucket gauges covering the entire island of Sardinia (Italy). Four techniques, including spectral and scale invariance analysis, and computation of clustering and intermittency exponents, are applied to quantify the contribution of the alternation of dry and wet intervals (i.e., the rainfall support fragmentation), and the fluctuations of intensity amplitudes, to the overall intermittency of the rainfall process. The presence of three ranges of scaling regimes between 1 min to ~ 45 days is first demonstrated. In accordance with past studies, these regimes can be associated with a range dominated by single storms, a regime typical of frontal systems, and a transition zone.

The positions of the breaking points separating these regimes change with the applied technique, suggesting that different tools explain different aspects of rainfall variability. Results indicate that the intermittency properties of rainfall support are fairly similar across the island, while metrics related to rainfall intensity fluctuations are characterized by significant spatial variability, implying that the local climate has a significant effect on the amplitude of rainfall fluctuations and minimal influence on the process of rainfall occurrence. In addition, for each analysis tool, evidence is shown of spatial patterns of the scaling exponents computed in the range of frontal systems. These patterns resemble the main pluviometric regimes observed on the island and, thus, can be associated with the corresponding synoptic circulation patterns. Last but not least, we demonstrate how the methodology adopted to sample the rainfall signal from the records of the tipping instants can significantly affect the intermittency analysis, especially at smaller scales. The multifractal scale invariance analysis is the only tool that is insensitive to the sampling approach. Results of this work may be useful to improve the calibration of stochastic algorithms used to downscale coarse rainfall predictions of climate and weather forecasting models, as well as the parameterization of intensity-duration-frequency curves, adopted for land planning and design of civil infrastructures.

Date Created
2013-01-29
Agent

Distributed Hydrologic Modeling of a Sparsely Monitored Basin in Sardinia, Italy, Through Hydrometeorological Downscaling

127924-Thumbnail Image.png
Description

The water resources and hydrologic extremes in Mediterranean basins are heavily influenced by climate variability. Modeling these watersheds is difficult due to the complex nature of the hydrologic response as well as the sparseness of hydrometeorological observations. In this work,

The water resources and hydrologic extremes in Mediterranean basins are heavily influenced by climate variability. Modeling these watersheds is difficult due to the complex nature of the hydrologic response as well as the sparseness of hydrometeorological observations. In this work, we present a strategy to calibrate a distributed hydrologic model, known as TIN-based Real-time Integrated Basin Simulator (tRIBS), in the Rio Mannu basin (RMB), a medium-sized watershed (472.5 km[superscript 2]) located in an agricultural area in Sardinia, Italy. In the RMB, precipitation, streamflow and meteorological data were collected within different historical periods and at diverse temporal resolutions. We designed two statistical tools for downscaling precipitation and potential evapotranspiration data to create the hourly, high-resolution forcing for the hydrologic model from daily records. Despite the presence of several sources of uncertainty in the observations and model parameterization, the use of the disaggregated forcing led to good calibration and validation performances for the tRIBS model, when daily discharge observations were available. The methodology proposed here can be also used to disaggregate outputs of climate models and conduct high-resolution hydrologic simulations with the goal of quantifying the impacts of climate change on water resources and the frequency of hydrologic extremes within medium-sized basins.

Date Created
2013-10-24
Agent