Single Molecule Protein Conductance Measurements: Novel Methods of Experimental Data Analysis

187793-Thumbnail Image.png
Description
Exploration of long-range conductance in non-redox-active proteins at the single molecule scale is aided by the development of innovative, tailor-made quantitative data analysis techniques. This thesis details the rationale behind the proposed approaches, the steps taken to design and implement

Exploration of long-range conductance in non-redox-active proteins at the single molecule scale is aided by the development of innovative, tailor-made quantitative data analysis techniques. This thesis details the rationale behind the proposed approaches, the steps taken to design and implement every method, and the validation of the methodologies using appropriate experiments, benchmarks, and rigorous statistical data analysis. The first chapter conducts a thorough literature review, sets the stage for the subsequent investigation, and underscores the importance of the research questions addressed in this thesis. The second chapter describes the solvent effects on the electronic conductance of a series of Consensus Tetratricopeptide Repeat proteins (CTPR) measured with Scanning Tunneling Microscopy (STM). The study reveals a reversible reduction in electronic conductance when water (H2O) is replaced with heavy water (D2O) due to a ~6-fold decrease in the carrier diffusion constant as proteins become solvated by D2O. Similar observations are made in a ~7 nm long tryptophan zipper protein, while a phenylalanine zipper protein of comparable length remains unchanged in D2O, highlighting the critical role of aromatic residues in proteins lacking redox cofactors. As an extension to this finding, the third chapter describes the development of a machine-learning model to detect the presence of a protein and identify essential features helping in the detection. For this purpose, a solid-state device was engineered to measure the conductance of CTPR-16 protein wires. This approach addresses the limitations in characterizing the STM gap, enables the collection of stable current vs. time data, and provides a statistical understanding of the electronic transport through a protein. The final chapter investigates real-time changes in conductance in response to protein conformation alterations. A deoxyribonucleic acid (DNA) polymerase Φ29 was chosen for its potential utility as a single-molecule DNA sequencing device. The modified enzyme was bound to electrodes functionalized with streptavidin. Φ29 connected by one biotinylated contact and a second nonspecific contact showed rapid small fluctuations in current when activated. Signals were greatly enhanced with two specific contacts. Features in the distributions of conductance increased by a factor of 2 or more over the open-to-closed conformational transition of the polymerase.
Date Created
2023
Agent