A review of challenges, barriers, and opportunities for large-scale deployment of cool surfaces

187989-Thumbnail Image.png
Description

Major urban centers are warming due to a combination of global and local phenomena. City governments are increasingly adopting strategies to mitigate the causes and impacts of extreme heat on their populations. Among these strategies are high solar-reflectance (cool) surfaces

Major urban centers are warming due to a combination of global and local phenomena. City governments are increasingly adopting strategies to mitigate the causes and impacts of extreme heat on their populations. Among these strategies are high solar-reflectance (cool) surfaces installed on building roofs and walls. Use of cool surfaces is a cost-effective and simple strategy that replaces conventional darker surfaces with surfaces that have a high reflectance to shortwave (solar) energy.

This report reviews the recent history of cool-surface deployment efforts. This includes peer-reviewed literature, conference proceedings, and grey literature to identify challenges and barriers to wide-scale deployment of cool surfaces. We have also researched heat action plans and programs from cities and different codes and standards, as well as available incentive and rebate programs.

The review identifies challenges, barriers, and opportunities associated with large-scale deployment of cool surfaces and categorizes them broadly as being related to product development & performance or policies & mandates. It provides a foundation upon which we intend to build a roadmap for rapidly accelerating future deployments of cool surfaces. This roadmap will address identified challenges and incorporate lessons learned from historical efforts to generate a practical and actionable plan.

Date Created
2023-05-24
Agent

A review of challenges, barriers, and opportunities for large-scale deployment of cool surfaces

187989-Thumbnail Image.png
Description

Major urban centers are warming due to a combination of global and local phenomena. City governments are increasingly adopting strategies to mitigate the causes and impacts of extreme heat on their populations. Among these strategies are high solar-reflectance (cool) surfaces

Major urban centers are warming due to a combination of global and local phenomena. City governments are increasingly adopting strategies to mitigate the causes and impacts of extreme heat on their populations. Among these strategies are high solar-reflectance (cool) surfaces installed on building roofs and walls. Use of cool surfaces is a cost-effective and simple strategy that replaces conventional darker surfaces with surfaces that have a high reflectance to shortwave (solar) energy.

This report reviews the recent history of cool-surface deployment efforts. This includes peer-reviewed literature, conference proceedings, and grey literature to identify challenges and barriers to wide-scale deployment of cool surfaces. We have also researched heat action plans and programs from cities and different codes and standards, as well as available incentive and rebate programs.

The review identifies challenges, barriers, and opportunities associated with large-scale deployment of cool surfaces and categorizes them broadly as being related to product development & performance or policies & mandates. It provides a foundation upon which we intend to build a roadmap for rapidly accelerating future deployments of cool surfaces. This roadmap will address identified challenges and incorporate lessons learned from historical efforts to generate a practical and actionable plan.

Date Created
2023-05-24
Agent

Early-Stage Design Decisions Toward Better Built Environment: Its Impact on Energy Consumption, and Heat Emission

187618-Thumbnail Image.png
Description

Cities are experiencing rapid warming due to the urban heat island (UHI) effect, which causes the city center to have higher air temperatures than the surrounding rural areas. This dissertation studies the effects of building design on the surrounding environment,

Cities are experiencing rapid warming due to the urban heat island (UHI) effect, which causes the city center to have higher air temperatures than the surrounding rural areas. This dissertation studies the effects of building design on the surrounding environment, particularly for heat release.The first paper in this dissertation (Chapter 2) quantifies the anthropogenic heat emissions from buildings and focuses on an archetype office building, the study is considering four U.S. cities with different climates. The results demonstrate that the building envelope is the main contributor to heat emission from a building, accounting for over 60% of the total heat emission in all cities for four-story buildings. Additionally, the study finds that substituting bare terrain with a constructed building increases sensed heat by more than 70% in all cities and building heights. The second paper (Chapter 3) of this dissertation identifies the key design variables that affect heat emissions and energy consumption in buildings. The study considers 15 U.S. cities that represents all 15 climate zones as defined by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). 10 design variables known for their impacts on energy consumption were identified via a literature review and used in the analysis. The results show that the window-to-wall ratio (WWR) consistently has a strong correlation with energy consumption in all climate zones. Roof and wall solar reflectance variables showed a very strong correlation with heat emissions from a building. The final paper of this dissertation (Chapter 4) presents the results of a survey distributed to experts in the architectural field, to evaluate the importance of different design variables that are related to heat emission and energy consumption. The survey also assessed the importance of considering heat emission as a design criterion during the design process when compared to energy consumption. These survey results provide new insights into how heat emission can be incorporated into the early design process. The dissertation then highlights the difference found via the survey results from the expert with the simulation results to identify the key design variable that relates to both heat emission and energy consumption.

Date Created
2023
Agent