Establishing Backward Paired Inhibitory Conditioning in Drosophila melanogaster

Description

Understanding learning in fruit flies (D. melanogaster) can lead to many important discoveries about learning in humans due to the large overlap of shared DNA and the appearance of the same diseases in both species. Fruit flies have already been

Understanding learning in fruit flies (D. melanogaster) can lead to many important discoveries about learning in humans due to the large overlap of shared DNA and the appearance of the same diseases in both species. Fruit flies have already been test subjects for many influential research experiments, some of which earned Nobel Prizes. This study seeks to investigate inhibitory conditioning in a way that differs from the traditional forward pairing inhibitory conditioning. Specifically, this experiment aims to establish inhibitory learning in fruit flies using backward association. The results show that when fruit flies are trained using backward conditioning as opposed to forward conditioning, there is a pattern of preference that differs substantially from the results showing an aversion to the associated odor in forward conditioning. When comparing the data using Two-Factor ANOVA of forward versus backward conditioning, it clearly indicates that the results are significant. Simply by altering the temporal placement of an unconditioned stimulus and a conditioned stimulus, the fruit flies learn significantly differently, switching from an aversion to the paired odor to a preference. Based on these results, fruit flies can be considered capable of inhibitory learning via backward pairing. Further research will consider whether responses become stronger after more repetitions of the training, and summation and retardation tests can be done in order to confirm that the response is, in fact, due to inhibitory conditioning and not just habituation.

Date Created
2023-05
Agent