Experimental Characterization of Sorbents for Direct Air Capture of Carbon Dioxide

171967-Thumbnail Image.png
Description
Climate change poses a serious challenge humankind. Society’s reliance on fossil fuels raises atmospheric CO2 concentrations causing global warming. Already, the planet has warmed by 1.1 °C making it nearly impossible to heed the advice of the IPCC (2022) and

Climate change poses a serious challenge humankind. Society’s reliance on fossil fuels raises atmospheric CO2 concentrations causing global warming. Already, the planet has warmed by 1.1 °C making it nearly impossible to heed the advice of the IPCC (2022) and prevent warming in excess of 1.5 °C by 2050. Even the current excess of CO2 in the atmosphere poses significant risks. Direct air capture (DAC) of CO2 offers one of the most scalable options to the drawdown of carbon. DAC can collect CO2 that is already diluted into the atmosphere for disposal or utilization. Central to most DAC are sorbents, i.e., materials that bind and release CO2 in a capture and release cycle. There are sorbents that cycle through a temperature swing. Others use a moisture swing, or a pressure swing or combinations of all of them. Since DAC is still a nascent technology, advancement of sorbents is an important part of DAC development. There is a nearly infinite combination of possible sorbents and form factors of sorbents that can be deployed in many different variations of DAC. Our goal is to develop a methodology for characterizing sorbents to facilitate rational choices among different options. Good sorbent characteristics include high capacity, fast sorption and desorption kinetics, low energy need for unloading, and longevity. This work presents the development of a systematic approach to evaluate sorbents from the milligram to tonne scale focusing on the important characteristics mentioned above. The work identified a good temperature swing sorbent whose characterization moved from the mg to kg scale without loss in performance. This work represents a first step in systematizing sorbent characterization for rational sorbent development programs.
Date Created
2022
Agent