Quantifying the Synergies in the Water-Energy Nexus Generated by Renewable Energy in a Water-Limited Metropolitan Region through Integrated Modeling
Description
The Water-Energy Nexus (WEN) is a concept that recognizes the interdependence of water and energy systems. The Phoenix metropolitan region (PMA) in Arizona has significant and potentially vulnerable WEN interactions. Future projections indicate that the population will increase and, with it, energy needs, while changes in future water demand are more uncertain. Climate change will also likely cause a reduction in surface water supply sources. Under these constraints, the expansion of renewable energy technology has the potential to benefit both water and energy systems and increase environmental sustainability by meeting future energy demands while lowering water use and CO2 emissions. However, the WEN synergies generated by renewables have not yet been thoroughly quantified, nor have the related costs been studied and compared to alternative options.Quantifying WEN intercations using numerical models is key to assessing renewable energy synergy. Despite recent advances, WEN models are still in their infancy, and research is needed to improve their accuracy and identify their limitations. Here, I highlight three research needs. First, most modeling efforts have been conducted for large-scale domains (e.g., states), while smaller scales, like metropolitan regions, have received less attention. Second, impacts of adopting different temporal (e.g., monthly, annual) and spatial (network granularity) resolutions on simulation accuracy have not been quantified. Third, the importance of simulating feedbacks between water and energy components has not been analyzed.
This dissertation fills these major research gaps by focusing on long-term water allocations and energy dispatch in the metropolitan region of Phoenix. An energy model is developed using the Low Emissions Analysis Platform (LEAP) platform and is subsequently coupled with a water management model based on the Water Evaluation and Planning (WEAP) platform. Analyses are conducted to quantify (1) the value of adopting coupled models instead of single models that are externally coupled, and (2) the accuracy of simulations based on different temporal resolutions of supply and demand and spatial granularity of the water and energy networks. The WEAP-LEAP integrated model is then employed under future climate scenarios to quantify the potential of renewable energy technologies to develop synergies between the PMA's water and energy systems.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2022
Agent
- Author (aut): Mounir, Adil
- Thesis advisor (ths): Mascaro, Giuseppe
- Committee member: White, Dave
- Committee member: Garcia, Margaret
- Committee member: Xu, Tianfang
- Committee member: Chester, Mikhail
- Publisher (pbl): Arizona State University