Acid Rain Monitoring and Catchment System

Description

As a result of the increase of pollution related to industrialization in Vietnam, acid rain has become a prevalent issue for Vietnamese farmers who are forced to rinse their crops – risking damage due to overwatering and poor harvest. Thus,

As a result of the increase of pollution related to industrialization in Vietnam, acid rain has become a prevalent issue for Vietnamese farmers who are forced to rinse their crops – risking damage due to overwatering and poor harvest. Thus, the team was motivated to develop a solution to harmful impacts of acidic rainwater by creating a system with the ability to capture rainwater and determine its level of acidity in order to optimize the crop watering process, and promote productive crops. By conducting preliminary research on rainfall and tropical climate in Vietnam, existing products on the market, and pH sensors for monitoring and device material, the team was able to design a number of devices to collect, store, and measure the pH of rainwater. After developing a number of initial design requirements based on the needs of the farmers, a final prototype was developed using the best aspects of each initial design. Tests were conducted with varying structural and aqueous materials to represent a broad range of environmental conditions. While the scope of the project was ultimately limited to prototyping purposes, the principles explored throughout this thesis project can successfully be applied to a fully-functioning production model available for commercial use on Vietnamese farms. Given more time for development, improvements would be made in the extent of materials tested, and the configuration of electronics and data acquisition, in order to further optimize the process of determining rainwater acidity.

Date Created
2023-05
Agent

Robust Autopilot Control of a Ground Vehicle

Description

A robust autopilot control system for a ground vehicle was designed, fabricated, and implemented on a remote control car. The autopilot system consists of navigation, guidance, and three controller subsystems. The autopilot’s hardware subsystems are an Arduino processor, GPS receiver,

A robust autopilot control system for a ground vehicle was designed, fabricated, and implemented on a remote control car. The autopilot system consists of navigation, guidance, and three controller subsystems. The autopilot’s hardware subsystems are an Arduino processor, GPS receiver, 9 DOF inertial measurement system, and an SD card data logger. A complete system simulation was developed and used to verify the integrated design and algorithms, prior to field testing. The simulation results indicated the system performs as designed, with no anomalous behaviors observed. Simulations were also used to assess and verify each of the three controllers’ robustness qualities. The complete hardware system was field tested and verified fully functional against complex mission scenarios. The system performed as designed, with no anomalous behaviors observed. The system performed successfully in the presence of external disturbances (e.g., rocks, holes, dirt piles in the vehicle’s path), which demonstrated and verified the design is robust. Additional robustness testing consisted of doubling the vehicle’s polar moment of inertia and verifying this did not have any adverse effects on system performance. All the planned tasks were completed and the project’s objectives were met.

Date Created
2022-12
Agent