Improving the Efficiency of Organic Fertilizer For Soilless Cultivation Using Plant Growth Promoting Microorganisms
Description
Chemical fertilizers are commonly used for controlled environment agriculture because they provide essential plant nutrient efficiently. However, rising fertilizer costs, global phosphorous shortage, and the negative impacts of producing and using chemical fertilizer are concerns for sustainable crop production. As sustainable alternatives to chemical fertilizers, there is a growing interest in using organic fertilizers with beneficial plant growth promoting microorganisms. The objectives of this research were to investigate how the application of plant growth promoting bacteria and arbuscular mycorrhizal fungi influences plant growth of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum) seedlings in soilless media under organic fertilization. In the first study, the effects of Azosprillium brasilense and Rhizophagus intraradices inoculation on lettuce and tomato seedling growth were quantified under two different organic fertilizer types compared to under chemical fertilizer. The results showed that A. brasilense and R. intraradices had little to no effect on any growth parameter measured in either species regardless of fertilizer type. In the second study, an investigation of the co-inoculation of A. brasilense and R. intraradices or increasing the application frequency of A. brasilense or/and R. intraradices increased plant growth promoting effects in lettuce ‘Cherokee’ and ‘Rex’ grown under organic fertilization. An application frequency of every 2-days of the R. intraradices without or with A. brasilense increased shoot fresh weight in both lettuce cultivars by 51-58%, compared to un-inoculated control. In contrast, lettuce seedling growth were similar without or with applying R. intraradices weekly or A. brasilense regardless of frequency. Together, the results suggest that applying R. intraradices with a proper application frequency can enhance plant growth of lettuce under organic fertilization.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2022
Agent
- Author (aut): McClintic, Nicklas Charles
- Thesis advisor (ths): Park, Yujin
- Committee member: Penton, Christopher R
- Committee member: Chen, Changbin
- Publisher (pbl): Arizona State University