Generalizing Under Distribution Shifts and Data Scarcity via Geometrical and Knowledge-Aware Deep Learning

187454-Thumbnail Image.png
Description
This dissertation presents novel solutions for improving the generalization capabilities of deep learning based computer vision models. Neural networks are known to suffer a large drop in performance when tested on samples from a different distribution than the one on

This dissertation presents novel solutions for improving the generalization capabilities of deep learning based computer vision models. Neural networks are known to suffer a large drop in performance when tested on samples from a different distribution than the one on which they were trained. The proposed solutions, based on latent space geometry and meta-learning, address this issue by improving the robustness of these models to distribution shifts. Through the use of geometrical alignment, state-of-the-art domain adaptation and source-free test-time adaptation strategies are developed. Additionally, geometrical alignment can allow classifiers to be progressively adapted to new, unseen test domains without requiring retraining of the feature extractors. The dissertation also presents algorithms for enabling in-the-wild generalization without needing access to any samples from the target domain. Other causes of poor generalization, such as data scarcity in critical applications and training data with high levels of noise and variance, are also explored. To address data scarcity in fine-grained computer vision tasks such as object detection, novel context-aware augmentations are suggested. While the first four chapters focus on general-purpose computer vision models, strategies are also developed to improve robustness in specific applications. The efficiency of training autonomous agents for visual navigation is improved by incorporating semantic knowledge, and the integration of domain experts' knowledge allows for the realization of a low-cost, minimally invasive generalizable automated rehabilitation system. Lastly, new tools for explainability and model introspection using counter-factual explainers trained through interval-based uncertainty calibration objectives are presented.
Date Created
2023
Agent

Representation Learning for Graph Structured Data using Deep Neural Networks

168287-Thumbnail Image.png
Description
Dealing with relational data structures is central to a wide-range of applications including social networks, epidemic modeling, molecular chemistry, medicine, energy distribution, and transportation. Machine learning models that can exploit the inherent structural/relational bias in the graph structured data have

Dealing with relational data structures is central to a wide-range of applications including social networks, epidemic modeling, molecular chemistry, medicine, energy distribution, and transportation. Machine learning models that can exploit the inherent structural/relational bias in the graph structured data have gained prominence in recent times. A recurring idea that appears in all approaches is to encode the nodes in the graph (or the entire graph) as low-dimensional vectors also known as embeddings, prior to carrying out downstream task-specific learning. It is crucial to eliminate hand-crafted features and instead directly incorporate the structural inductive bias into the deep learning architectures. In this dissertation, deep learning models that directly operate on graph structured data are proposed for effective representation learning. A literature review on existing graph representation learning is provided in the beginning of the dissertation. The primary focus of dissertation is on building novel graph neural network architectures that are robust against adversarial attacks. The proposed graph neural network models are extended to multiplex graphs (heterogeneous graphs). Finally, a relational neural network model is proposed to operate on a human structural connectome. For every research contribution of this dissertation, several empirical studies are conducted on benchmark datasets. The proposed graph neural network models, approaches, and architectures demonstrate significant performance improvements in comparison to the existing state-of-the-art graph embedding strategies.
Date Created
2021
Agent