Bayesian Methods for Tuning Hyperparameters of Loss Functions in Machine Learning

168839-Thumbnail Image.png
Description
The introduction of parameterized loss functions for robustness in machine learning has led to questions as to how hyperparameter(s) of the loss functions can be tuned. This thesis explores how Bayesian methods can be leveraged to tune such hyperparameters. Specifically,

The introduction of parameterized loss functions for robustness in machine learning has led to questions as to how hyperparameter(s) of the loss functions can be tuned. This thesis explores how Bayesian methods can be leveraged to tune such hyperparameters. Specifically, a modified Gibbs sampling scheme is used to generate a distribution of loss parameters of tunable loss functions. The modified Gibbs sampler is a two-block sampler that alternates between sampling the loss parameter and optimizing the other model parameters. The sampling step is performed using slice sampling, while the optimization step is performed using gradient descent. This thesis explores the application of the modified Gibbs sampler to alpha-loss, a tunable loss function with a single parameter $\alpha \in (0,\infty]$, that is designed for the classification setting. Theoretically, it is shown that the Markov chain generated by a modified Gibbs sampling scheme is ergodic; that is, the chain has, and converges to, a unique stationary (posterior) distribution. Further, the modified Gibbs sampler is implemented in two experiments: a synthetic dataset and a canonical image dataset. The results show that the modified Gibbs sampler performs well under label noise, generating a distribution indicating preference for larger values of alpha, matching the outcomes of previous experiments.
Date Created
2022
Agent

Spatial Regression and Gaussian Process BART

158850-Thumbnail Image.png
Description
Spatial regression is one of the central topics in spatial statistics. Based on the goals, interpretation or prediction, spatial regression models can be classified into two categories, linear mixed regression models and nonlinear regression models. This dissertation explored these models

Spatial regression is one of the central topics in spatial statistics. Based on the goals, interpretation or prediction, spatial regression models can be classified into two categories, linear mixed regression models and nonlinear regression models. This dissertation explored these models and their real world applications. New methods and models were proposed to overcome the challenges in practice. There are three major parts in the dissertation.

In the first part, nonlinear regression models were embedded into a multistage workflow to predict the spatial abundance of reef fish species in the Gulf of Mexico. There were two challenges, zero-inflated data and out of sample prediction. The methods and models in the workflow could effectively handle the zero-inflated sampling data without strong assumptions. Three strategies were proposed to solve the out of sample prediction problem. The results and discussions showed that the nonlinear prediction had the advantages of high accuracy, low bias and well-performed in multi-resolution.

In the second part, a two-stage spatial regression model was proposed for analyzing soil carbon stock (SOC) data. In the first stage, there was a spatial linear mixed model that captured the linear and stationary effects. In the second stage, a generalized additive model was used to explain the nonlinear and nonstationary effects. The results illustrated that the two-stage model had good interpretability in understanding the effect of covariates, meanwhile, it kept high prediction accuracy which is competitive to the popular machine learning models, like, random forest, xgboost and support vector machine.

A new nonlinear regression model, Gaussian process BART (Bayesian additive regression tree), was proposed in the third part. Combining advantages in both BART and Gaussian process, the model could capture the nonlinear effects of both observed and latent covariates. To develop the model, first, the traditional BART was generalized to accommodate correlated errors. Then, the failure of likelihood based Markov chain Monte Carlo (MCMC) in parameter estimating was discussed. Based on the idea of analysis of variation, back comparing and tuning range, were proposed to tackle this failure. Finally, effectiveness of the new model was examined by experiments on both simulation and real data.
Date Created
2020
Agent