The Effect of Bulk Composition on the Sulfur Content of Cores

158384-Thumbnail Image.png
Description
This study explores how bulk composition and oxygen fugacity (fO2) affect the partitioning of sulfur between the molten mantle and core of an early planetesimal. The model can be used to determine the range of potential sulfur concentrations in the

This study explores how bulk composition and oxygen fugacity (fO2) affect the partitioning of sulfur between the molten mantle and core of an early planetesimal. The model can be used to determine the range of potential sulfur concentrations in the asteroid (16) Psyche, which is the target of the National Aeronautics and Space Administration/Arizona State University Psyche Mission. This mission will be our visit to an M-type asteroid, thought to be dominantly metallic.

The model looks at how oxygen fugacity (fO2), bulk composition, temperature, and pressure affect sulfur partitioning in planetesimals using experimentally derived equations from previous studies. In this model, the bulk chemistry and oxygen fugacity of the parent body is controlled by changing the starting material, using ordinary chondrites (H, L, LL) and carbonaceous chondrites (CM, CI, CO, CK, CV). The temperature of the planetesimal is changed from 1523 K to 1873 K, the silicate mobilization and total melting temperatures, respectively; and pressure from 0.1 to 20 GPa, the core mantle boundary pressures of Vesta and Mars, respectively.

The final sulfur content of a differentiated planetesimal core is strongly dependent on the bulk composition of the original parent body. In all modeled cores, the sulfur content is above 5 weight percent sulfur; this is the point at which the least amount of other light elements is needed to form an immiscible sulfide liquid in a molten core. Early planetesimal cores likely formed an immiscible sulfide liquid, a eutectic sulfide liquid, or potentially were composed of mostly troilite, FeS.
Date Created
2020
Agent