The Efficacy of Algal Biofertilizer as a Protective Factor Against Salinity Stress in Solanum
Lycopersicum

164318-Thumbnail Image.png
Description

Precise addition of agricultural inputs to maximize yields, especially in the face of environmental stresses, becomes important from the financial and sustainability perspectives. Given compounding factors such as climate change and disputed water claims in the American Southwest, the ability

Precise addition of agricultural inputs to maximize yields, especially in the face of environmental stresses, becomes important from the financial and sustainability perspectives. Given compounding factors such as climate change and disputed water claims in the American Southwest, the ability to build resistance against salinity stress becomes especially important. It was evaluated if an algal bio-fertilizer was able to remediate salinity stress in Solanum Lycopersicum. A hydroponic apparatus was employed, and data from Burge Environmental’s MiProbes™ both were able to demonstrate remediation. Future research could include determining the minimum dosage of algal fertilizer sufficient to induce this result, or the maximum concentration of salt that an algal treatment can provide a protective effect against.

Date Created
2022-05
Agent

Monitoring Algal Abundance, Water Quality, And Deploying Microbial Sensors Along the Central Arizona Project

161935-Thumbnail Image.png
Description
Microalgae offer a unique set of promises and perils for environmental management and sustainable production. Algal blooms are becoming a more frequent phenomenon within water infrastructure. As algae blooms are common, water infrastructure across the world has seen mounting problems

Microalgae offer a unique set of promises and perils for environmental management and sustainable production. Algal blooms are becoming a more frequent phenomenon within water infrastructure. As algae blooms are common, water infrastructure across the world has seen mounting problems associated with algal blooms. Some of these problems include biofouling and release of toxins. Since 1997, Arizona’s Central Arizona Project (CAP) has faced escalating problems associated with the algae diatom Cymbella sp. and the green-algae Cladophora glomerata. In this research study, algae are diagramed within the CAP system, the nutrient and abiotic requirements of the diatom Cymbella sp. are determined, and real-time microbial sensors are deployed along the CAP canals for understanding algae blooms and changes in CAP flow conditions. The following research objectives are met: How can water delivery infrastructure improve algae contamination risks in critical water resources? To do this research demonstrates that (i) nuisance algae species within the CAP canals are Cymbella sp. and Cladophora glomerata (ii) that the nuisance “rock-snot” diatom Cymbella sp. is not Cymbella mexicana nor is it Cymbella janischii, but rather a novel Cymbella sp.(iii) that in laboratory settings, Cymbella sp. prefers high Phosphorus and low Nitrogen conditions (iv) that the Cymbella sp. bloom happens in the early summer along the CAP canals (v) that the diatom Cymbella sp. can be removed through chemical treatments (vi) that microbial sensors can measure changes in algae composition along the CAP canals (vii) that microbial sensors, water quality parameters, and weather data can be integrated to measure algae blooms within water systems.
Date Created
2021
Agent

The Application of a Novel Microbial Sensor on Tomato (Solanum lycopersicum L.) Growth Monitoring

161847-Thumbnail Image.png
Description
Precision agriculture (PA) integrating information technology arouses broad interests and has been extensively studied to increase crop production and quality. Sensor probe technology, as one of the PA technologies, provides people with accurate real-time data, which has become an essential

Precision agriculture (PA) integrating information technology arouses broad interests and has been extensively studied to increase crop production and quality. Sensor probe technology, as one of the PA technologies, provides people with accurate real-time data, which has become an essential part of precision agriculture. Herein a novel microbial sensor probe (MiProbE) is applied to monitor and study the growth of tomatoes (Solanum lycopersicum L.) in real-time at germination and seedling stages. The result showed the raw Miprobe signals present day/night cycles. Alginate-coated probes effectively avoided signal response failure and were more sensitive to the treatments than uncoated probes. The probe signals from successfully germinated tomato seeds and non-germinated seeds were different, and the signal curve of the probe was closely related to the growth conditions of tomato seedlings. Specifically, the rising period of the probe signals coincided with the normal growth period of tomato seedlings. All probes exhibited sudden increases in signal strength after nutrient treatments; however, subsequent probe signals behaved differently: algae extract-treated probe signals maintained a high strength after the treatments; chemical fertilizer-treated probe signals decreased earlier after the treatments; chemical fertilizers and algae extract-treated probe signals also maintained a higher strength after the treatments. Moreover, the relationship between ash-free dry weight and the signal curve indicated that the signal strength positively correlates with the dry weight, although other biological activities can affect the probe signal at the same time. Further study is still needed to investigate the relationship between plant biomass and Miprobe signal.
Date Created
2021
Agent

Glycoside Hydrolase Gene Families Of Termite Hindgut Protists

157712-Thumbnail Image.png
Description
This project was completed to understand the evolution of the ability to digest wood in termite symbiotic protists. Lower termites harbor bacterial and protist symbionts which are essential to the termite ability to use wood as a nutritional source, producing

This project was completed to understand the evolution of the ability to digest wood in termite symbiotic protists. Lower termites harbor bacterial and protist symbionts which are essential to the termite ability to use wood as a nutritional source, producing glycoside hydrolases to break down the polysaccharides found in lignocellulose. Yet, only a few molecular studies have been done to confirm the protist species responsible for particular enzymes. By mining publicly available and newly generated genomic and transcriptomic data, including three transcriptomes from isolated protist cells, I identify over 200 new glycoside hydrolase sequences and compute the phylogenies of eight glycoside hydrolase families (GHFs) reported to be expressed by termite hindgut protists.

Of those families examined, the results are broadly consistent with Todaka et al. 2010, though none of the GHFs found were expressed in both termite-associated protist and non-termite-associated protist transcriptome data. This suggests that, rather than being inherited from their free-living protist ancestors, GHF genes were acquired by termite protists while within the termite gut, potentially via lateral gene transfer (LGT). For example one family, GHF10, implies a single acquisition of a bacterial xylanase into termite protists. The phylogenies from GHF5 and GHF11 each imply two distinct acquisitions in termite protist ancestors, each from bacteria. In eukaryote-dominated GHFs, GHF7 and GHF45, there are three apparent acquisitions by termite protists. Meanwhile, it appears prior reports of GHF62 in the termite gut may have been misidentified GHF43 sequences. GHF43 was the only GHF found to contain sequences from the protists not found in the termite gut. These findings generally all support the possibility termite-associated protists adapted to a lignocellulosic diet after colonization of the termite hindgut. Nonetheless, the poor resolution of GHF phylogeny and limited termite and protist sampling constrain interpretation.
Date Created
2019
Agent