Modeling Emergent Behaviors of Multi-Cellular Systems in 3D Extracellular Matrix: Heterogeneous Extracellular Matrix Reconstruction, Cell Micromechanics and Novel Mechanotaxis

157142-Thumbnail Image.png
Description
Collective cell migration in the 3D fibrous extracellular matrix (ECM) is crucial to many physiological and pathological processes such as tissue regeneration, immune response and cancer progression. A migrating cell also generates active pulling forces, which are transmitted to the

Collective cell migration in the 3D fibrous extracellular matrix (ECM) is crucial to many physiological and pathological processes such as tissue regeneration, immune response and cancer progression. A migrating cell also generates active pulling forces, which are transmitted to the ECM fibers via focal adhesion complexes. Such active forces consistently remodel the local ECM (e.g., by re-orienting the collagen fibers, forming fiber bundles and increasing the local stiffness of ECM), leading to a dynamically evolving force network in the system that in turn regulates the collective migration of cells.

In this work, this novel mechanotaxis mechanism is investigated, i.e., the role of the ECM mediated active cellular force propagation in coordinating collective cell migration via computational modeling and simulations. The work mainly includes two components: (i) microstructure and micromechanics modeling of cellularized ECM (collagen) networks and (ii) modeling collective cell migration and self-organization in 3D ECM. For ECM modeling, a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization is devised. Analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. For modeling collective migratory behaviors of the cells, a minimal active-particle-on-network (APN) model is developed, in which reveals a dynamic transition in the system as the particle number density ρ increases beyond a critical value ρc, from an absorbing state in which the particles segregate into small isolated stationary clusters, to a dynamic state in which the majority of the particles join in a single large cluster undergone constant dynamic reorganization. The results, which are consistent with independent experimental results, suggest a robust mechanism based on ECM-mediated mechanical coupling for collective cell behaviors in 3D ECM.

For the future plan, further substantiate the minimal cell migration model by incorporating more detailed cell-ECM interactions and relevant sub-cellular mechanisms is needed, as well as further investigation of the effects of fiber alignment, ECM mechanical properties and externally applied mechanical cues on collective migration dynamics.
Date Created
2019
Agent