Biomedical Information Extraction Pipelines for Public Health in the Age of Deep Learning

157992-Thumbnail Image.png
Description
Unstructured texts containing biomedical information from sources such as electronic health records, scientific literature, discussion forums, and social media offer an opportunity to extract information for a wide range of applications in biomedical informatics. Building scalable and efficient pipelines for

Unstructured texts containing biomedical information from sources such as electronic health records, scientific literature, discussion forums, and social media offer an opportunity to extract information for a wide range of applications in biomedical informatics. Building scalable and efficient pipelines for natural language processing and extraction of biomedical information plays an important role in the implementation and adoption of applications in areas such as public health. Advancements in machine learning and deep learning techniques have enabled rapid development of such pipelines. This dissertation presents entity extraction pipelines for two public health applications: virus phylogeography and pharmacovigilance. For virus phylogeography, geographical locations are extracted from biomedical scientific texts for metadata enrichment in the GenBank database containing 2.9 million virus nucleotide sequences. For pharmacovigilance, tools are developed to extract adverse drug reactions from social media posts to open avenues for post-market drug surveillance from non-traditional sources. Across these pipelines, high variance is observed in extraction performance among the entities of interest while using state-of-the-art neural network architectures. To explain the variation, linguistic measures are proposed to serve as indicators for entity extraction performance and to provide deeper insight into the domain complexity and the challenges associated with entity extraction. For both the phylogeography and pharmacovigilance pipelines presented in this work the annotated datasets and applications are open source and freely available to the public to foster further research in public health.
Date Created
2019
Agent

Fixed verse generation using neural word embeddings

154765-Thumbnail Image.png
Description
For the past three decades, the design of an effective strategy for generating poetry that matches that of a human’s creative capabilities and complexities has been an elusive goal in artificial intelligence (AI) and natural language generation (NLG) research, and

For the past three decades, the design of an effective strategy for generating poetry that matches that of a human’s creative capabilities and complexities has been an elusive goal in artificial intelligence (AI) and natural language generation (NLG) research, and among linguistic creativity researchers in particular. This thesis presents a novel approach to fixed verse poetry generation using neural word embeddings. During the course of generation, a two layered poetry classifier is developed. The first layer uses a lexicon based method to classify poems into types based on form and structure, and the second layer uses a supervised classification method to classify poems into subtypes based on content with an accuracy of 92%. The system then uses a two-layer neural network to generate poetry based on word similarities and word movements in a 50-dimensional vector space.

The verses generated by the system are evaluated using rhyme, rhythm, syllable counts and stress patterns. These computational features of language are considered for generating haikus, limericks and iambic pentameter verses. The generated poems are evaluated using a Turing test on both experts and non-experts. The user study finds that only 38% computer generated poems were correctly identified by nonexperts while 65% of the computer generated poems were correctly identified by experts. Although the system does not pass the Turing test, the results from the Turing test suggest an improvement of over 17% when compared to previous methods which use Turing tests to evaluate poetry generators.
Date Created
2016
Agent