Technical and Policy Barriers to Terawatt-Scale Implementation of Solar Photovoltaics

171767-Thumbnail Image.png
Description
This research identifies several barriers to large scale implementation of solar photovoltaics into the modern US electricity system, along with solutions to help mitigate these challenges. The need for new technologies and utility rate plans are identified as two of

This research identifies several barriers to large scale implementation of solar photovoltaics into the modern US electricity system, along with solutions to help mitigate these challenges. The need for new technologies and utility rate plans are identified as two of these key barriers. In place of expensive, developing technologies this research explores the use of thermal energy storage (TES), a widely used, inexpensive, mature technology as a potential solution for a portion of this problem. A real-life example from Arizona State University (ASU) is used to illustrate the potential of TES. In addition, shortcomings of modern electricity rate plans are identified using both cost and system characteristics of residential solar and battery systems. This rate and system modeling also gives insight into the value that solar can provide to residential customers in a variety of settings.
Date Created
2022
Agent

Using thermal energy storage to increase photovoltaic penetration at Arizona State University's Tempe Campus

154722-Thumbnail Image.png
Description
This thesis examines using thermal energy storage as a demand side management tool for air-conditioning loads with the goal of increasing photovoltaic penetration. It uses Arizona State University (ASU) as a case study. The analysis is completed with a modeling

This thesis examines using thermal energy storage as a demand side management tool for air-conditioning loads with the goal of increasing photovoltaic penetration. It uses Arizona State University (ASU) as a case study. The analysis is completed with a modeling approach using typical meteorological year (TMY) data, along with ASU’s historical load data. Sustainability, greenhouse gas emissions, carbon neutrality, and photovoltaic (PV) penetration are all considered along with potential economic impacts.

By extrapolating the air-conditioning load profile from the existing data sets, it can be ensured that cooling demands can be met at all times under the new management method. Using this cooling demand data, it is possible to determine how much energy is required to meet these needs. Then, modeling the PV arrays, the thermal energy storage (TES), and the chillers, the maximum PV penetration in the future state can be determined.

Using this approach, it has been determined that ASU can increase their solar PV resources by a factor of 3.460, which would amount to a PV penetration of approximately 48%.
Date Created
2016
Agent