Highly integrated switched-mode power converters employing CMOS and GaN technologies for distributed MPPT
Description
The photovoltaic systems used to convert solar energy to electricity pose a multitude of design and implementation challenges, including energy conversion efficiency, partial shading effects, and power converter efficiency. Using power converters for Distributed Maximum Power Point Tracking (DMPPT) is a well-known architecture to significantly reduce power loss associated with mismatched panels. Sub-panel-level DMPPT is shown to have up to 14.5% more annual energy yield than panel-level DMPPT, and requires an efficient medium power converter.
This research aims at implementing a highly efficient power management system at sub-panel level with focus on system cost and form-factor. Smaller form-factor motivates increased converter switching frequencies to significantly reduce the size of converter passives and substantially improve transient performance. But, currently available power MOSFETs put a constraint on the highest possible switching frequency due to increased switching losses. The solution is Gallium Nitride based power devices, which deliver figure of merit (FOM) performance at least an order of magnitude higher than existing silicon MOSFETs. Low power loss, high power density, low cost and small die sizes are few of the qualities that make e-GaN superior to its Si counterpart. With careful design, e-GaN can enable a 20-30% improvement in power stage efficiency compared to converters using Si MOSFETs.
The main objective of this research is to develop a highly integrated, high efficiency, 20MHz, hybrid GaN-CMOS DC-DC MPPT converter for a 12V/5A sub-panel. Hard and soft switching boost converter topologies are investigated within this research, and an innovative CMOS gate drive technique for efficiently driving an e-GaN power stage is presented in this work. The converter controller also employs a fast converging analog MPPT control technique.
This research aims at implementing a highly efficient power management system at sub-panel level with focus on system cost and form-factor. Smaller form-factor motivates increased converter switching frequencies to significantly reduce the size of converter passives and substantially improve transient performance. But, currently available power MOSFETs put a constraint on the highest possible switching frequency due to increased switching losses. The solution is Gallium Nitride based power devices, which deliver figure of merit (FOM) performance at least an order of magnitude higher than existing silicon MOSFETs. Low power loss, high power density, low cost and small die sizes are few of the qualities that make e-GaN superior to its Si counterpart. With careful design, e-GaN can enable a 20-30% improvement in power stage efficiency compared to converters using Si MOSFETs.
The main objective of this research is to develop a highly integrated, high efficiency, 20MHz, hybrid GaN-CMOS DC-DC MPPT converter for a 12V/5A sub-panel. Hard and soft switching boost converter topologies are investigated within this research, and an innovative CMOS gate drive technique for efficiently driving an e-GaN power stage is presented in this work. The converter controller also employs a fast converging analog MPPT control technique.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2015
Agent
- Author (aut): Krishnan Achary, Kiran Kumar
- Thesis advisor (ths): Kitchen, Jennifer
- Committee member: Kiaei, Sayfe
- Committee member: Bakkaloglu, Bertan
- Publisher (pbl): Arizona State University