Advancing Large-Scale Creativity through Adaptive Inspirations and Research in Context

157095-Thumbnail Image.png
Description
An old proverb claims that “two heads are better than one”. Crowdsourcing research and practice have taken this to heart, attempting to show that thousands of heads can be even better. This is not limited to leveraging a crowd’s knowledge,

An old proverb claims that “two heads are better than one”. Crowdsourcing research and practice have taken this to heart, attempting to show that thousands of heads can be even better. This is not limited to leveraging a crowd’s knowledge, but also their creativity—the ability to generate something not only useful, but also novel. In practice, there are initiatives such as Free and Open Source Software communities developing innovative software. In research, the field of crowdsourced creativity, which attempts to design scalable support mechanisms, is blooming. However, both contexts still present many opportunities for advancement.

In this dissertation, I seek to advance both the knowledge of limitations in current technologies used in practice as well as the mechanisms that can be used for large-scale support. The overall research question I explore is: “How can we support large-scale creative collaboration in distributed online communities?” I first advance existing support techniques by evaluating the impact of active support in brainstorming performance. Furthermore, I leverage existing theoretical models of individual idea generation as well as recommender system techniques to design CrowdMuse, a novel adaptive large-scale idea generation system. CrowdMuse models users in order to adapt itself to each individual. I evaluate the system’s efficacy through two large-scale studies. I also advance knowledge of current large-scale practices by examining common communication channels under the lens of Creativity Support Tools, yielding a list of creativity bottlenecks brought about by the affordances of these channels. Finally, I connect both ends of this dissertation by deploying CrowdMuse in an Open Source online community for two weeks. I evaluate their usage of the system as well as its perceived benefits and issues compared to traditional communication tools.

This dissertation makes the following contributions to the field of large-scale creativity: 1) the design and evaluation of a first-of-its-kind adaptive brainstorming system; 2) the evaluation of the effects of active inspirations compared to simple idea exposure; 3) the development and application of a set of creativity support design heuristics to uncover creativity bottlenecks; and 4) an exploration of large-scale brainstorming systems’ usefulness to online communities.
Date Created
2019
Agent

Discoverable Free Space Gesture Sets for Walk-Up-and-Use Interactions

157027-Thumbnail Image.png
Description
Advances in technology are fueling a movement toward ubiquity for beyond-the-desktop systems. Novel interaction modalities, such as free space or full body gestures are becoming more common, as demonstrated by the rise of systems such as the Microsoft Kinect. However,

Advances in technology are fueling a movement toward ubiquity for beyond-the-desktop systems. Novel interaction modalities, such as free space or full body gestures are becoming more common, as demonstrated by the rise of systems such as the Microsoft Kinect. However, much of the interaction design research for such systems is still focused on desktop and touch interactions. Current thinking in free-space gestures are limited in capability and imagination and most gesture studies have not attempted to identify gestures appropriate for public walk-up-and-use applications. A walk-up-and-use display must be discoverable, such that first-time users can use the system without any training, flexible, and not fatiguing, especially in the case of longer-term interactions. One mechanism for defining gesture sets for walk-up-and-use interactions is a participatory design method called gesture elicitation. This method has been used to identify several user-generated gesture sets and shown that user-generated sets are preferred by users over those defined by system designers. However, for these studies to be successfully implemented in walk-up-and-use applications, there is a need to understand which components of these gestures are semantically meaningful (i.e. do users distinguish been using their left and right hand, or are those semantically the same thing?). Thus, defining a standardized gesture vocabulary for coding, characterizing, and evaluating gestures is critical. This dissertation presents three gesture elicitation studies for walk-up-and-use displays that employ a novel gesture elicitation methodology, alongside a novel coding scheme for gesture elicitation data that focuses on features most important to users’ mental models. Generalizable design principles, based on the three studies, are then derived and presented (e.g. changes in speed are meaningful for scroll actions in walk up and use displays but not for paging or selection). The major contributions of this work are: (1) an elicitation methodology that aids users in overcoming biases from existing interaction modalities; (2) a better understanding of the gestural features that matter, e.g. that capture the intent of the gestures; and (3) generalizable design principles for walk-up-and-use public displays.
Date Created
2019
Agent

Real-Time Affective Support to Promote Learner’s Engagement

156774-Thumbnail Image.png
Description
Research has shown that the learning processes can be enriched and enhanced with the presence of affective interventions. The goal of this dissertation was to design, implement, and evaluate an affective agent that provides affective support in real-time in order

Research has shown that the learning processes can be enriched and enhanced with the presence of affective interventions. The goal of this dissertation was to design, implement, and evaluate an affective agent that provides affective support in real-time in order to enrich the student’s learning experience and performance by inducing and/or maintaining a productive learning path. This work combined research and best practices from affective computing, intelligent tutoring systems, and educational technology to address the design and implementation of an affective agent and corresponding pedagogical interventions. It included the incorporation of the affective agent into an Exploratory Learning Environment (ELE) adapted for this research.

A gendered, three-dimensional, animated, human-like character accompanied by text- and speech-based dialogue visually represented the proposed affective agent. The agent’s pedagogical interventions considered inputs from the ELE (interface, model building, and performance events) and from the user (emotional and cognitive events). The user’s emotional events captured by biometric sensors and processed by a decision-level fusion algorithm for a multimodal system in combination with the events from the ELE informed the production-rule-based behavior engine to define and trigger pedagogical interventions. The pedagogical interventions were focused on affective dimensions and occurred in the form of affective dialogue prompts and animations.

An experiment was conducted to assess the impact of the affective agent, Hope, on the student’s learning experience and performance. In terms of the student’s learning experience, the effect of the agent was analyzed in four components: perception of the instructional material, perception of the usefulness of the agent, ELE usability, and the affective responses from the agent triggered by the student’s affective states.

Additionally, in terms of the student’s performance, the effect of the agent was analyzed in five components: tasks completed, time spent solving a task, planning time while solving a task, usage of the provided help, and attempts to successfully complete a task. The findings from the experiment did not provide the anticipated results related to the effect of the agent; however, the results provided insights to improve diverse components in the design of affective agents as well as for the design of the behavior engines and algorithms to detect, represent, and handle affective information.
Date Created
2018
Agent

Using differential sequence mining to associate patterns of interactions in concept mapping activity with dimensions of collaborative process

154213-Thumbnail Image.png
Description
Computer supported collaborative learning (CSCL) has made great inroads in classroom teaching marked by the use of tools and technologies to support and enhance collaborative learning. Computer mediated learning environments produce large amounts of data, capturing student interactions, which can

Computer supported collaborative learning (CSCL) has made great inroads in classroom teaching marked by the use of tools and technologies to support and enhance collaborative learning. Computer mediated learning environments produce large amounts of data, capturing student interactions, which can be used to analyze students’ learning behaviors (Martinez-Maldonado et al., 2013a). The analysis of the process of collaboration is an active area of research in CSCL. Contributing towards this area, Meier et al. (2007) defined nine dimensions and gave a rating scheme to assess the quality of collaboration. This thesis aims to extract and examine frequent patterns of students’ interactions that characterize strong and weak groups across the above dimensions. To achieve this, an exploratory data mining technique, differential sequence mining, was employed using data from a collaborative concept mapping activity where collaboration amongst students was facilitated by an interactive tabletop. The results associate frequent patterns of collaborative concept mapping process with some of the dimensions assessing the quality of collaboration. The analysis of associating these patterns with the dimensions of collaboration is theoretically grounded, considering aspects of collaborative learning, concept mapping, communication, group cognition and information processing. The results are preliminary but still demonstrate the potential of associating frequent patterns of interactions with strong and weak groups across specific dimensions of collaboration, which is relevant for students, teachers, and researchers to monitor the process of collaborative learning. The frequent patterns for strong groups reflected conformance to the process of conversation for dimensions related to “communication” aspect of collaboration. In terms of the concept mapping sub-processes the frequent patterns for strong groups reflect the presentation phase of conversation with processes like talking, sharing individual maps while constructing the groups concept map followed by short utterances which represents the acceptance phase. For “joint information processing” aspect of collaboration, the frequent patterns for strong groups were marked by learners’ contributing more upon each other’s work. In terms of the concept mapping sub-processes the frequent patterns were marked by learners adding links to each other’s concepts or working with each other’s concepts, while revising the group concept map.
Date Created
2015
Agent