Molecular models for conductance in junctions and electrochemical electron transfer

154210-Thumbnail Image.png
Description
This thesis develops molecular models for electron transport in molecular junctions and intra-molecular electron transfer. The goal is to identify molecular descriptors that afford a substantial simplification of these electronic processes.

First, the connection between static molecular polarizability and the

This thesis develops molecular models for electron transport in molecular junctions and intra-molecular electron transfer. The goal is to identify molecular descriptors that afford a substantial simplification of these electronic processes.

First, the connection between static molecular polarizability and the molecular conductance is examined. A correlation emerges whereby the measured conductance of a tunneling junction decreases as a function of the calculated molecular polarizability for several systems, a result consistent with the idea of a molecule as a polarizable dielectric. A model based on a macroscopic extension of the Clausius-Mossotti equation to the molecular domain and Simmon’s tunneling model is developed to explain this correlation. Despite the simplicity of the theory, it paves the way for further experimental, conceptual and theoretical developments in the use of molecular descriptors to describe both conductance and electron transfer.

Second, the conductance of several biologically relevant, weakly bonded, hydrogen-bonded systems is systematically investigated. While there is no correlation between hydrogen bond strength and conductance, the results indicate a relation between the conductance and atomic polarizability of the hydrogen bond acceptor atom. The relevance of these results to electron transfer in biological systems is discussed.

Hydrogen production and oxidation using catalysts inspired by hydrogenases provides a more sustainable alternative to the use of precious metals. To understand electrochemical and spectroscopic properties of a collection of Fe and Ni mimics of hydrogenases, high-level density functional theory calculations are described. The results, based on a detailed analysis of the energies, charges and molecular orbitals of these metal complexes, indicate the importance of geometric constraints imposed by the ligand on molecular properties such as acidity and electrocatalytic activity. Based on model calculations of several intermediates in the catalytic cycle of a model NiFe complex, a hypothetical reaction mechanism, which very well agrees with the observed experimental results, is proffered.

Future work related to this thesis may involve the systematic analysis of chemical reactivity in constrained geometries, a subject of importance if the context of enzymatic activity. Another, more intriguing direction is related to the fundamental issue of reformulating Marcus theory in terms of the molecular dielectric response function.
Date Created
2015
Agent