Performance of contextual multilevel models for comparing between-person and within-person effects

154939-Thumbnail Image.png
Description
The comparison of between- versus within-person relations addresses a central issue in psychological research regarding whether group-level relations among variables generalize to individual group members. Between- and within-person effects may differ in magnitude as well as direction, and contextual multilevel

The comparison of between- versus within-person relations addresses a central issue in psychological research regarding whether group-level relations among variables generalize to individual group members. Between- and within-person effects may differ in magnitude as well as direction, and contextual multilevel models can accommodate this difference. Contextual multilevel models have been explicated mostly for cross-sectional data, but they can also be applied to longitudinal data where level-1 effects represent within-person relations and level-2 effects represent between-person relations. With longitudinal data, estimating the contextual effect allows direct evaluation of whether between-person and within-person effects differ. Furthermore, these models, unlike single-level models, permit individual differences by allowing within-person slopes to vary across individuals. This study examined the statistical performance of the contextual model with a random slope for longitudinal within-person fluctuation data.

A Monte Carlo simulation was used to generate data based on the contextual multilevel model, where sample size, effect size, and intraclass correlation (ICC) of the predictor variable were varied. The effects of simulation factors on parameter bias, parameter variability, and standard error accuracy were assessed. Parameter estimates were in general unbiased. Power to detect the slope variance and contextual effect was over 80% for most conditions, except some of the smaller sample size conditions. Type I error rates for the contextual effect were also high for some of the smaller sample size conditions. Conclusions and future directions are discussed.
Date Created
2016
Agent

Time metric in latent difference score models

154889-Thumbnail Image.png
Description
Time metric is an important consideration for all longitudinal models because it can influence the interpretation of estimates, parameter estimate accuracy, and model convergence in longitudinal models with latent variables. Currently, the literature on latent difference score (LDS) models does

Time metric is an important consideration for all longitudinal models because it can influence the interpretation of estimates, parameter estimate accuracy, and model convergence in longitudinal models with latent variables. Currently, the literature on latent difference score (LDS) models does not discuss the importance of time metric. Furthermore, there is little research using simulations to investigate LDS models. This study examined the influence of time metric on model estimation, interpretation, parameter estimate accuracy, and convergence in LDS models using empirical simulations. Results indicated that for a time structure with a true time metric where participants had different starting points and unequally spaced intervals, LDS models fit with a restructured and less informative time metric resulted in biased parameter estimates. However, models examined using the true time metric were less likely to converge than models using the restructured time metric, likely due to missing data. Where participants had different starting points but equally spaced intervals, LDS models fit with a restructured time metric resulted in biased estimates of intercept means, but all other parameter estimates were unbiased, and models examined using the true time metric had less convergence than the restructured time metric as well due to missing data. The findings of this study support prior research on time metric in longitudinal models, and further research should examine these findings under alternative conditions. The importance of these findings for substantive researchers is discussed.
Date Created
2016
Agent

Modeling multifaceted constructs in statistical mediation analysis: a bifactor approach

154852-Thumbnail Image.png
Description
Statistical mediation analysis allows researchers to identify the most important the mediating constructs in the causal process studied. Information about the mediating processes can be used to make interventions more powerful by enhancing successful program components and by not implementing

Statistical mediation analysis allows researchers to identify the most important the mediating constructs in the causal process studied. Information about the mediating processes can be used to make interventions more powerful by enhancing successful program components and by not implementing components that did not significantly change the outcome. Identifying mediators is especially relevant when the hypothesized mediating construct consists of multiple related facets. The general definition of the construct and its facets might relate differently to external criteria. However, current methods do not allow researchers to study the relationships between general and specific aspects of a construct to an external criterion simultaneously. This study proposes a bifactor measurement model for the mediating construct as a way to represent the general aspect and specific facets of a construct simultaneously. Monte Carlo simulation results are presented to help to determine under what conditions researchers can detect the mediated effect when one of the facets of the mediating construct is the true mediator, but the mediator is treated as unidimensional. Results indicate that parameter bias and detection of the mediated effect depends on the facet variance represented in the mediation model. This study contributes to the largely unexplored area of measurement issues in statistical mediation analysis.
Date Created
2016
Agent

Sensitivity analysis of longitudinal measurement non-invariance: a second-order latent growth model approach with ordered-categorical indicators

154781-Thumbnail Image.png
Description
Researchers who conduct longitudinal studies are inherently interested in studying individual and population changes over time (e.g., mathematics achievement, subjective well-being). To answer such research questions, models of change (e.g., growth models) make the assumption of longitudinal measurement invariance. In

Researchers who conduct longitudinal studies are inherently interested in studying individual and population changes over time (e.g., mathematics achievement, subjective well-being). To answer such research questions, models of change (e.g., growth models) make the assumption of longitudinal measurement invariance. In many applied situations, key constructs are measured by a collection of ordered-categorical indicators (e.g., Likert scale items). To evaluate longitudinal measurement invariance with ordered-categorical indicators, a set of hierarchical models can be sequentially tested and compared. If the statistical tests of measurement invariance fail to be supported for one of the models, it is useful to have a method with which to gauge the practical significance of the differences in measurement model parameters over time. Drawing on studies of latent growth models and second-order latent growth models with continuous indicators (e.g., Kim & Willson, 2014a; 2014b; Leite, 2007; Wirth, 2008), this study examined the performance of a potential sensitivity analysis to gauge the practical significance of violations of longitudinal measurement invariance for ordered-categorical indicators using second-order latent growth models. The change in the estimate of the second-order growth parameters following the addition of an incorrect level of measurement invariance constraints at the first-order level was used as an effect size for measurement non-invariance. This study investigated how sensitive the proposed sensitivity analysis was to different locations of non-invariance (i.e., non-invariance in the factor loadings, the thresholds, and the unique factor variances) given a sufficient sample size. This study also examined whether the sensitivity of the proposed sensitivity analysis depended on a number of other factors including the magnitude of non-invariance, the number of non-invariant indicators, the number of non-invariant occasions, and the number of response categories in the indicators.
Date Created
2016
Agent

Approaches to studying measurement invariance in multilevel data with a level-1 grouping variable

154396-Thumbnail Image.png
Description
Measurement invariance exists when a scale functions equivalently across people and is therefore essential for making meaningful group comparisons. Often, measurement invariance is examined with independent and identically distributed data; however, there are times when the participants are clustered within

Measurement invariance exists when a scale functions equivalently across people and is therefore essential for making meaningful group comparisons. Often, measurement invariance is examined with independent and identically distributed data; however, there are times when the participants are clustered within units, creating dependency in the data. Researchers have taken different approaches to address this dependency when studying measurement invariance (e.g., Kim, Kwok, & Yoon, 2012; Ryu, 2014; Kim, Yoon, Wen, Luo, & Kwok, 2015), but there are no comparisons of the various approaches. The purpose of this master's thesis was to investigate measurement invariance in multilevel data when the grouping variable was a level-1 variable using five different approaches. Publicly available data from the Early Childhood Longitudinal Study-Kindergarten Cohort (ECLS-K) was used as an illustrative example. The construct of early behavior, which was made up of four teacher-rated behavior scales, was evaluated for measurement invariance in relation to gender. In the specific case of this illustrative example, the statistical conclusions of the five approaches were in agreement (i.e., the loading of the externalizing item and the intercept of the approaches to learning item were not invariant). Simulation work should be done to investigate in which situations the conclusions of these approaches diverge.
Date Created
2016
Agent

Three-level multiple imputation: a fully conditional specification approach

154040-Thumbnail Image.png
Description
Currently, there is a clear gap in the missing data literature for three-level models.

To date, the literature has only focused on the theoretical and algorithmic work

required to implement three-level imputation using the joint model (JM) method of

imputation, leaving relatively no

Currently, there is a clear gap in the missing data literature for three-level models.

To date, the literature has only focused on the theoretical and algorithmic work

required to implement three-level imputation using the joint model (JM) method of

imputation, leaving relatively no work done on fully conditional specication (FCS)

method. Moreover, the literature lacks any methodological evaluation of three-level

imputation. Thus, this thesis serves two purposes: (1) to develop an algorithm in

order to implement FCS in the context of a three-level model and (2) to evaluate

both imputation methods. The simulation investigated a random intercept model

under both 20% and 40% missing data rates. The ndings of this thesis suggest

that the estimates for both JM and FCS were largely unbiased, gave good coverage,

and produced similar results. The sole exception for both methods was the slope for

the level-3 variable, which was modestly biased. The bias exhibited by the methods

could be due to the small number of clusters used. This nding suggests that future

research ought to investigate and establish clear recommendations for the number of

clusters required by these imputation methods. To conclude, this thesis serves as a

preliminary start in tackling a much larger issue and gap in the current missing data

literature.
Date Created
2015
Agent