Substrate-independent nanomaterial deposition via hypersonic impaction

153903-Thumbnail Image.png
Description
In the nano-regime many materials exhibit properties that are quite different from their bulk counterparts. These nano-properties have been shown to be useful in a wide range of applications with nanomaterials being used for catalysts, in energy production, as protective

In the nano-regime many materials exhibit properties that are quite different from their bulk counterparts. These nano-properties have been shown to be useful in a wide range of applications with nanomaterials being used for catalysts, in energy production, as protective coatings, and in medical treatment. While there is no shortage of exciting and novel applications, the world of nanomaterials suffers from a lack of large scale manufacturing techniques. The current methods and equipment used for manufacturing nanomaterials are generally slow, expensive, potentially dangerous, and material specific. The research and widespread use of nanomaterials has undoubtedly been hindered by this lack of appropriate tooling. This work details the effort to create a novel nanomaterial synthesis and deposition platform capable of operating at industrial level rates and reliability.

The tool, referred to as Deppy, deposits material via hypersonic impaction, a two chamber process that takes advantage of compressible fluids operating in the choked flow regime to accelerate particles to up several thousand meters per second before they impact and stick to the substrate. This allows for the energetic separation of the synthesis and deposition processes while still behaving as a continuous flow reactor giving Deppy the unique ability to independently control the particle properties and the deposited film properties. While the ultimate goal is to design a tool capable of producing a broad range of nanomaterial films, this work will showcase Deppy's ability to produce silicon nano-particle films as a proof of concept.

By adjusting parameters in the upstream chamber the particle composition was varied from completely amorphous to highly crystalline as confirmed by Raman spectroscopy. By adjusting parameters in the downstream chamber significant variation of the film's density was achieved. Further it was shown that the system is capable of making these adjustments in each chamber without affecting the operation of the other.
Date Created
2015
Agent

Study of photoluminescence from amorphous and crystalline silicon nanoparticles synthesized using a non-thermal plasma

153867-Thumbnail Image.png
Description
High photoluminescence (PL) quantum yields reported from amorphous (a-Si) and crystalline (c-Si) nanoparticles have opened up lots of possibilities for use of silicon in optical applications such as light emitting diodes (LEDs), photonics and solar cells with added processing and

High photoluminescence (PL) quantum yields reported from amorphous (a-Si) and crystalline (c-Si) nanoparticles have opened up lots of possibilities for use of silicon in optical applications such as light emitting diodes (LEDs), photonics and solar cells with added processing and cost benefits. However, the PL response and the mechanisms behind it are highly dependent on the matrix in which the nanoparticles are grown and on the growth method. While, the bottom-up approach for deposition of free standing nanoparticles seem to be perfectly suited for large area deposition for LED and solar cell applications, the dominant growth techniques (laser ablation and pyrolysis) have been shown to suffer from limitations in control over size distribution of nanoparticles and the requirement of equipment capable of withstanding high temperature. This led to the exploration of plasma based synthesis methods in this work.

Towards this effort, the development and automation of a novel tool “Anny” for synthesis of silicon nanoparticles using non-thermal plasma chamber is reported. These nanoparticles are then accelerated due to choked flow through a nozzle leading to substrate independent deposition. The nanoparticle properties are characterized against precursor gas flow rates and RF power to identify the optimum growth conditions for a stable, continuous deposition. It is found that amorphous nanoparticles offer a wide variety of chamber conditions for growth with a high throughput, stable plasma for continuous, long term operations.

The quantum confinement model for crystalline and spatial confinement models for amorphous nanoparticles in our size regime (6-8nm) are suggested for free standing nanoparticles and we report a high PL output from well passivated amorphous nanoparticles.

The PL output and its dependence on stability of surface hydrogen passivation is explored using Fourier Transform Infrared spectroscopy (FTIR). It is shown that the amorphous nanoparticles have a better and more stable passivation compared to crystalline nanoparticles grown under similar conditions. Hence, we show a-Si nanoparticles as exciting alternatives for optical applications to c-Si nanoparticles.
Date Created
2015
Agent