Stochastic Multi Attribute Analysis for comparative life cycle assessment
Description
Comparative life cycle assessment (LCA) evaluates the relative performance of multiple products, services, or technologies with the purpose of selecting the least impactful alternative. Nevertheless, characterized results are seldom conclusive. When one alternative performs best in some aspects, it may also performs worse in others. These tradeoffs among different impact categories make it difficult to identify environmentally preferable alternatives. To help reconcile this dilemma, LCA analysts have the option to apply normalization and weighting to generate comparisons based upon a single score. However, these approaches can be misleading because they suffer from problems of reference dataset incompletion, linear and fully compensatory aggregation, masking of salient tradeoffs, weight insensitivity and difficulties incorporating uncertainty in performance assessment and weights. Consequently, most LCA studies truncate impacts assessment at characterization, which leaves decision-makers to confront highly uncertain multi-criteria problems without the aid of analytic guideposts. This study introduces Stochastic Multi attribute Analysis (SMAA), a novel approach to normalization and weighting of characterized life-cycle inventory data for use in comparative Life Cycle Assessment (LCA). The proposed method avoids the bias introduced by external normalization references, and is capable of exploring high uncertainty in both the input parameters and weights.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2015
Agent
- Author (aut): Prado, Valentina
- Thesis advisor (ths): Seager, Thomas P
- Committee member: Chester, Mikhail V
- Committee member: Kullapa Soratana
- Committee member: Tervonen, Tommi
- Publisher (pbl): Arizona State University