Does It Work for Me? Supporting Self-Experimentation of Simple Health Behavior Interventions

157388-Thumbnail Image.png
Description
Many individual-level behavioral interventions improve health and well-being. However, most interventions exhibit considerable heterogeneity in response. Put differently, what might be effective on average might not be effective for specific individuals. From an individual’s perspective, many healthy behaviors exist that

Many individual-level behavioral interventions improve health and well-being. However, most interventions exhibit considerable heterogeneity in response. Put differently, what might be effective on average might not be effective for specific individuals. From an individual’s perspective, many healthy behaviors exist that seem to have a positive impact. However, few existing tools support people in identifying interventions that work for them, personally.

One approach to support such personalization is via self-experimentation using single-case designs. ‘Hack Your Health’ is a tool that guides individuals through an 18-day self-experiment to test if an intervention they choose (e.g., meditation, gratitude journaling) improves their own psychological well-being (e.g., stress, happiness), whether it fits in their routine, and whether they enjoy it.

The purpose of this work was to conduct a formative evaluation of Hack Your Health to examine user burden, adherence, and to evaluate its usefulness in supporting decision-making about a health intervention. A mixed-methods approach was used, and two versions of the tool were tested via two waves of participants (Wave 1, N=20; Wave 2, N=8). Participants completed their self-experiments and provided feedback via follow-up surveys (n=26) and interviews (n=20).

Findings indicated that the tool had high usability and low burden overall. Average survey completion rate was 91%, and compliance to protocol was 72%. Overall, participants found the experience useful to test if their chosen intervention helped them. However, there were discrepancies between participants’ intuition about intervention effect and results from analyses. Participants often relied on intuition/lived experience over results for decision-making. This suggested that the usefulness of Hack Your Health in its current form might be through the structure, accountability, and means for self-reflection it provided rather than the specific experimental design/results. Additionally, situations where performing interventions within a rigorous/restrictive experimental set-up may not be appropriate (e.g., when goal is to assess intervention enjoyment) were uncovered. Plausible design implications include: longer experimental and phase durations, accounting for non-compliance, missingness, and proximal/acute effects, and exploring strategies to complement quantitative data with participants’ lived experiences with interventions to effectively support decision-making. Future work should explore ways to balance scientific rigor with participants’ needs for such decision-making.
Date Created
2019
Agent

Supporting self-experimentation of behavior change strategies

155187-Thumbnail Image.png
Description
Desirable outcomes such as health and wellbeing are tightly linked to people’s behaviors, thus inspiring research on technologies that support productively changing those behaviors. Many behavior change technologies are designed by Human-Computer Interaction experts, but this approach makes it difficult

Desirable outcomes such as health and wellbeing are tightly linked to people’s behaviors, thus inspiring research on technologies that support productively changing those behaviors. Many behavior change technologies are designed by Human-Computer Interaction experts, but this approach makes it difficult to personalize support to each user’s unique goals and needs. As an alternative to the provision of expert-developed pre-fabricated behavior change solutions, the present study aims to empower users’ self-experimentation for behavior change. To this end, two levels of supports were explored. First, the provision of interactive digital materials to support users’ creation of behavioral plans was developed. In the initial step, a tutorial for self-experimentation for behavior change that was fully scripted with images in succession was created. The tutorial focuses on facilitating users’ learning and applying behavior change techniques. Second, users were equipped with a tool to support their implementation of context-aware just-in-time interventions. This tool enables prototyping of sensor-based responsive systems for home environments, integrating simple sensors (two-state magnetic sensors, etc.) and media event components (wireless sound, etc.).

To evaluate the effectiveness of these two approaches, a between-subject trial comparing the approaches to a sleep education control was conducted with 27 participants over 7 weeks. Although results did not reveal significant difference in sleep quality improvement between the conditions, trends indicating greater effectiveness in the two treatment groups were observed. Analysis of the plans participants created and their revision performance also indicated that the two treatment groups developed more specific and personalized plans compared with the control group.
Date Created
2016
Agent

A system identification and control engineering approach for optimizing mHealth behavioral interventions based on social cognitive theory

154920-Thumbnail Image.png
Description
Behavioral health problems such as physical inactivity are among the main causes of mortality around the world. Mobile and wireless health (mHealth) interventions offer the opportunity for applying control engineering concepts in behavioral change settings. Social Cognitive Theory (SCT) is

Behavioral health problems such as physical inactivity are among the main causes of mortality around the world. Mobile and wireless health (mHealth) interventions offer the opportunity for applying control engineering concepts in behavioral change settings. Social Cognitive Theory (SCT) is among the most influential theories of health behavior and has been used as the conceptual basis of many behavioral interventions. This dissertation examines adaptive behavioral interventions for physical inactivity problems based on SCT using system identification and control engineering principles. First, a dynamical model of SCT using fluid analogies is developed. The model is used throughout the dissertation to evaluate system identification approaches and to develop control strategies based on Hybrid Model Predictive Control (HMPC). An initial system identification informative experiment is designed to obtain basic insights about the system. Based on the informative experimental results, a second optimized experiment is developed as the solution of a formal constrained optimization problem. The concept of Identification Test Monitoring (ITM) is developed for determining experimental duration and adjustments to the input signals in real time. ITM relies on deterministic signals, such as multisines, and uncertainty regions resulting from frequency domain transfer function estimation that is performed during experimental execution. ITM is motivated by practical considerations in behavioral interventions; however, a generalized approach is presented for broad-based multivariable application settings such as process control. Stopping criteria for the experimental test utilizing ITM are developed using both open-loop and robust control considerations.

A closed-loop intensively adaptive intervention for physical activity is proposed relying on a controller formulation based on HMPC. The discrete and logical features of HMPC naturally address the categorical nature of the intervention components that include behavioral goals and reward points. The intervention incorporates online controller reconfiguration to manage the transition between the behavioral initiation and maintenance training stages. Simulation results are presented to illustrate the performance of the system using a model for a hypothetical participant under realistic conditions that include uncertainty. The contributions of this dissertation can ultimately impact novel applications of cyberphysical system in medical applications.
Date Created
2016
Agent

Associations between moral foundations and healthy eating identity and self-efficacy

151536-Thumbnail Image.png
Description
Background: Previous research suggests a healthy eater schema (i.e., identifying yourself as a healthy eater) may be a useful concept to target in interventions. A "stealth" intervention that discussed the moral issues related to food worked better at promoting healthful

Background: Previous research suggests a healthy eater schema (i.e., identifying yourself as a healthy eater) may be a useful concept to target in interventions. A "stealth" intervention that discussed the moral issues related to food worked better at promoting healthful eating than an intervention focused on the health benefits. No research has explored the relationship between moral foundations, a theoretical model focused on delineating core "foundations" for making a moral decision, and healthy eater self-identity or self-efficacy. Purpose: We explored the relationship between moral foundations (i.e., harm/care, fairness/reciprocity, in-group/loyalty, authority/respect, & purity/sanctity) and health eater self-identity and fruit and vegetable self-efficacy (FVSE). Methods: 542 participants completed an online cross-sectional survey, which included moral foundations (i.e., MFQ), political views, healthy eater self-identity (i.e., HESS), and FVSE measures. Logistic regression was used to assess the relationship between moral foundations between healthy eater self-identity after controlling for age, gender, major, BMI, and political beliefs. OLS regression was used to explore the relationship between self-efficacy and the moral foundations after controlling for the covariates. Results: 75.6% of the sample were college students, with a mean age of 25.27 (SD=8.61). 25.1% of students were nutrition majors. Harm/care, authority/respect, and ingroup/loyalty were significantly associated with healthy eater schema, (i.e., OR=1.7, p<.001, OR=1.5, p=.009, and OR=1.4, p=.027, respectively). Ingroup/loyalty, authority/respect, and purity/sanctity were related to FVSE (p=.006, p=.002, p=.04, respectively). Conclusion: Among college students, harm/care and authority/respect were associated with a healthy eater schema. Future research should explore possible uses of these moral foundations in interventions (e.g., a plant-based diet based on reduced harm to animals or eating fewer processed views based on "traditional" values).
Date Created
2013
Agent

The association between the moral foundations theory, ethical concern and fast food consumption

151522-Thumbnail Image.png
Description
Health knowledge alone does not appear to lead to sustained healthy behavior, suggesting the need for alternative methods for improving diet. Recent research shows a possible role of moral contexts of food production on diet related behaviors; however no studies

Health knowledge alone does not appear to lead to sustained healthy behavior, suggesting the need for alternative methods for improving diet. Recent research shows a possible role of moral contexts of food production on diet related behaviors; however no studies have been conducted to specifically explore the relationship between moral constructs and food consumption. This study examined the relationship between fast food consumption and two measures of morality, Moral Foundations Questionnaire (MFQ), specifically harm/care and purity/sanctity foundations, and the Ethical Concern in food choice (EC) questionnaire, which includes animal welfare, environment protection, political values, and religion subscales. The study also examined the association between the measures of morality. 739 participants, primarily female (71.4%) and non-Hispanic Whites (76.5%), completed an online survey that included the MFQ, the EC questionnaire, and a brief fast food screener. Participant's morality scores in relation to their fast food consumption were examined first using bivariate ANOVA analysis and then using logistic regression to control for covariates. The MFQ foundations were compared with the EC subscales using Pearson correlation coefficient. Significant bivariate relationships were seen between fast food consumption and the MFQ's purity/sanctity foundation and EC's religion subscales (p<0.05). However these significant bivariate relationships did not hold after controlling for gender, race, university education, and religion in the logistic regression analysis. The foundations of the MFQ were positively correlated with the subscales for the EC questionnaire (r values ranging from .233-.613 (p<0.01). MFQ's purity/sanctity foundation and EC's religion subscale were the two most highly correlated (r=.613, p<0.01) showing that moral intuitions may be associated with eating decision making. The study did not find significant associations between MFQ or EC scores and fast food consumption.
Date Created
2013
Agent