Genomic diversity and abundance of LINE retrotransposons in 4 anole lizards

152309-Thumbnail Image.png
Description
Vertebrate genomes demonstrate a remarkable range of sizes from 0.3 to 133 gigabase pairs. The proliferation of repeat elements are a major genomic expansion. In particular, long interspersed nuclear elements (LINES) are autonomous retrotransposons that have the ability to "cut

Vertebrate genomes demonstrate a remarkable range of sizes from 0.3 to 133 gigabase pairs. The proliferation of repeat elements are a major genomic expansion. In particular, long interspersed nuclear elements (LINES) are autonomous retrotransposons that have the ability to "cut and paste" themselves into a host genome through a mechanism called target-primed reverse transcription. LINES have been called "junk DNA," "viral DNA," and "selfish" DNA, and were once thought to be parasitic elements. However, LINES, which diversified before the emergence of many early vertebrates, has strongly shaped the evolution of eukaryotic genomes. This thesis will evaluate LINE abundance, diversity and activity in four anole lizards. An intrageneric analysis will be conducted using comparative phylogenetics and bioinformatics. Comparisons within the Anolis genus, which derives from a single lineage of an adaptive radiation, will be conducted to explore the relationship between LINE retrotransposon activity and causal changes in genomic size and composition.
Date Created
2013
Agent

From plasma peptide to phenotype: the emerging role of quiescin sulfhydryl oxidase 1 in tumor cell biology

151241-Thumbnail Image.png
Description
Cancer is a disease that affects millions of people worldwide each year. The metastatic progression of cancer is the number one reason for cancer related deaths. Cancer preventions rely on the early identification of tumor cells as well as a

Cancer is a disease that affects millions of people worldwide each year. The metastatic progression of cancer is the number one reason for cancer related deaths. Cancer preventions rely on the early identification of tumor cells as well as a detailed understanding of cancer as a whole. Identifying proteins specific to tumor cells provide an opportunity to develop noninvasive clinical tests and further our understanding of tumor biology. Using liquid chromatography-mass spectrometry (LC-MS/MS) a short peptide was identified in pancreatic cancer patient plasma that was not found in normal samples, and mapped back to QSOX1 protein. Immunohistochemistry was performed probing for QSOX1 in tumor tissue and discovered that QSOX1 is highly over-expressed in pancreatic and breast tumors. QSOX1 is a FAD-dependent sulfhydryl oxidase that is extremely efficient at forming disulfide bonds in nascent proteins. While the enzymology of QSOX1 has been well studied, the tumor biology of QSOX1 has not been studied. To begin to determine the advantage that QSOX1 over-expression provides to tumors, short hairpin RNA (shRNA) were used to reduce the expression of QSOX1 in human tumor cell lines. Following the loss of QSOX1 growth rate, apoptosis, cell cycle and invasive potential were compared between tumor cells transduced with shQSOX1 and control tumor cells. Knock-down of QSOX1 protein suppressed tumor cell growth but had no effect on apoptosis and cell cycle regulation. However, shQSOX1 dramatically inhibited the abilities of both pancreatic and breast tumor cells to invade through Matrigel in a modified Boyden chamber assay. Mechanistically, shQSOX1-transduced tumor cells secreted MMP-2 and -9 that were less active than MMP-2 and -9 from control cells. Taken together, these results suggest that the mechanism of QSOX1-mediated tumor cell invasion is through the post-translational activation of MMPs. This dissertation represents the first in depth study of the role that QSOX1 plays in tumor cell biology.
Date Created
2012
Agent