System-level Models for Network Monitoring and Change Detection

168304-Thumbnail Image.png
Description
Monitoring a system for deviations from standard or reference behavior is essential for many data-driven tasks. Whether it is monitoring sensor data or the interactions between system elements, such as edges in a path or transactions in a network, the

Monitoring a system for deviations from standard or reference behavior is essential for many data-driven tasks. Whether it is monitoring sensor data or the interactions between system elements, such as edges in a path or transactions in a network, the goal is to detect significant changes from a reference. As technological advancements allow for more data to be collected from systems, monitoring approaches should evolve to accommodate the greater collection of high-dimensional data and complex system settings. This dissertation introduces system-level models for monitoring tasks characterized by changes in a subset of system components, utilizing component-level information and relationships. A change may only affect a portion of the data or system (partial change). The first three parts of this dissertation present applications and methods for detecting partial changes. The first part introduces a methodology for partial change detection in a simple, univariate setting. Changes are detected with posterior probabilities and statistical mixture models which allow only a fraction of data to change. The second and third parts of this dissertation center around monitoring more complex multivariate systems modeled through networks. The goal is to detect partial changes in the underlying network attributes and topology. The contributions of the second and third parts are two non-parametric system-level monitoring techniques that consider relationships between network elements. The algorithm Supervised Network Monitoring (SNetM) leverages Graph Neural Networks and transforms the problem into supervised learning. The other algorithm Supervised Network Monitoring for Partial Temporal Inhomogeneity (SNetMP) generates a network embedding, and then transforms the problem to supervised learning. At the end, both SNetM and SNetMP construct measures and transform them to pseudo-probabilities to be monitored for changes. The last topic addresses predicting and monitoring system-level delays on paths in a transportation/delivery system. For each item, the risk of delay is quantified. Machine learning is used to build a system-level model for delay risk, given the information available (such as environmental conditions) on the edges of a path, which integrates edge models. The outputs can then be used in a system-wide monitoring framework, and items most at risk are identified for potential corrective actions.
Date Created
2021
Agent

Modeling frameworks for supply chain analytics

150555-Thumbnail Image.png
Description
Supply chains are increasingly complex as companies branch out into newer products and markets. In many cases, multiple products with moderate differences in performance and price compete for the same unit of demand. Simultaneous occurrences of multiple scenarios (competitive, disruptive,

Supply chains are increasingly complex as companies branch out into newer products and markets. In many cases, multiple products with moderate differences in performance and price compete for the same unit of demand. Simultaneous occurrences of multiple scenarios (competitive, disruptive, regulatory, economic, etc.), coupled with business decisions (pricing, product introduction, etc.) can drastically change demand structures within a short period of time. Furthermore, product obsolescence and cannibalization are real concerns due to short product life cycles. Analytical tools that can handle this complexity are important to quantify the impact of business scenarios/decisions on supply chain performance. Traditional analysis methods struggle in this environment of large, complex datasets with hundreds of features becoming the norm in supply chains. We present an empirical analysis framework termed Scenario Trees that provides a novel representation for impulse and delayed scenario events and a direction for modeling multivariate constrained responses. Amongst potential learners, supervised learners and feature extraction strategies based on tree-based ensembles are employed to extract the most impactful scenarios and predict their outcome on metrics at different product hierarchies. These models are able to provide accurate predictions in modeling environments characterized by incomplete datasets due to product substitution, missing values, outliers, redundant features, mixed variables and nonlinear interaction effects. Graphical model summaries are generated to aid model understanding. Models in complex environments benefit from feature selection methods that extract non-redundant feature subsets from the data. Additional model simplification can be achieved by extracting specific levels/values that contribute to variable importance. We propose and evaluate new analytical methods to address this problem of feature value selection and study their comparative performance using simulated datasets. We show that supply chain surveillance can be structured as a feature value selection problem. For situations such as new product introduction, a bottom-up approach to scenario analysis is designed using an agent-based simulation and data mining framework. This simulation engine envelopes utility theory, discrete choice models and diffusion theory and acts as a test bed for enacting different business scenarios. We demonstrate the use of machine learning algorithms to analyze scenarios and generate graphical summaries to aid decision making.
Date Created
2012
Agent