High-resolution imaging of structure and dynamics of the lowermost mantle

150487-Thumbnail Image.png
Description
This research investigates Earth structure in the core-mantle boundary (CMB) region, where the solid rocky mantle meets the molten iron alloy core. At long wavelengths, the lower mantle is characterized by two nearly antipodal large low shear velocity provinces (LLSVPs),

This research investigates Earth structure in the core-mantle boundary (CMB) region, where the solid rocky mantle meets the molten iron alloy core. At long wavelengths, the lower mantle is characterized by two nearly antipodal large low shear velocity provinces (LLSVPs), one beneath the Pacific Ocean the other beneath Africa and the southern Atlantic Ocean. However, fine-scale LLSVP structure as well as its relationship with plate tectonics, mantle convection, hotspot volcanism, and Earth's outer core remains poorly understood. The recent dramatic increase in seismic data coverage due to the EarthScope experiment presents an unprecedented opportunity to utilize large concentrated datasets of seismic data to improve resolution of lowermost mantle structures. I developed an algorithm that identifies anomalously broadened seismic waveforms to locate sharp contrasts in shear velocity properties across the margins of the LLSVP beneath the Pacific. The result suggests that a nearly vertical mantle plume underlies Hawaii that originates from a peak of a chemically distinct reservoir at the base of the mantle, some 600-900 km above the CMB. Additionally, acute horizontal Vs variations across and within the northern margin of the LLSVP beneath the central Pacific Ocean are inferred from forward modeling of differential travel times between S (and Sdiff) and SKS, and also between ScS and S. I developed a new approach to expand the geographic detection of ultra-low velocity zones (ULVZs) with a new ScS stacking approach that simultaneously utilizes the pre- and post-cursor wavefield.. Strong lateral variations in ULVZ thicknesses and properties are found across the LLSVP margins, where ULVZs are thicker and stronger within the LLSVP than outside of it, consistent with convection model predictions. Differential travel times, amplitude ratios, and waveshapes of core waves SKKS and SKS are used to investigate CMB topography and outermost core velocity structure. 1D and 2D wavefield simulations suggest that the complicated geographic distribution of observed SKKS waveform anomalies might be a result of CMB topography and a higher velocity outermost core. These combined analyses depict a lowermost mantle that is rich in fine-scale structural complexity, which advances our understanding of its integral role in mantle circulation, mixing, and evolution.
Date Created
2012
Agent

Using array seismology to study planetary interiors

150470-Thumbnail Image.png
Description
Stratification is a dominant feature of all planetary interiors. Fine-scale structure associated with layering, as well as heterogeneities hold important clues on a planet's compositional, thermal, and dynamical state, as well as its evolution. This research centers on using data

Stratification is a dominant feature of all planetary interiors. Fine-scale structure associated with layering, as well as heterogeneities hold important clues on a planet's compositional, thermal, and dynamical state, as well as its evolution. This research centers on using data from seismic arrays, networks of seismic sensors, and array processing methodologies to map the fine scale structure in the Earth's upper mantle and deep layering in the Moon - Earth and Moon are the only two planetary bodies with seismic available data for such analyses. Small-scale structure in the Earth's upper mantle can give rise to seismic wave scattering. I studied high frequency data from the Warramunga Array in Australia using array seismology. I developed and employed back-projection schemes to map the possible upper mantle scattering or reflection locations. Mapped scatterers show good correlation to strong lateral P-wave velocity gradients in tomography models and may be associated with the complex tectonic history beneath north of Australia. The minimum scale of scatterers relates to the seismic wavelength, which is roughly between 5 and 10 km in the upper mantle for the frequencies we study. The Apollo Passive Seismic Experiment (APSE) consisted of four 3-component seismometers deployed between 1969 and 1972 that continuously recorded lunar ground motion until late 1977. I studied the deep lunar interior with array methods applied to the legacy APSE dataset. The stack results suggest the presence of a solid inner and fluid outer core, overlain by a partially molten boundary layer, but their reflector impedance contrasts and reflector depths are not well constrained. With a rapidly increasing number of available modern broadband data, I developed a package, Discovery Using Ducttape Excessively (DUDE), to quickly generate plots for a comprehensive view of earthquake data. These plots facilitate discovery of unexpected phenomena. This dissertation identifies evidence for small-scale heterogeneities in Earth's upper mantle, and deeper lunar layering structure. Planetary interiors are complex with the heterogeneities on many scales, and discontinuities of variable character. This research demonstrates that seismic array methods are well-suited for interrogating heterogeneous phenomena, especially considering the recent rapid expansion of easily available dense network data.
Date Created
2011
Agent