Aerodynamic Characterization of a Tethered Rotor

157865-Thumbnail Image.png
Description
An airborne, tethered, multi-rotor wind turbine, effectively a rotorcraft kite, provides one platform for accessing the energy in high altitude winds. The craft is maintained at altitude by its rotors operating in autorotation, and its equilibrium attitude and dynamic performance

An airborne, tethered, multi-rotor wind turbine, effectively a rotorcraft kite, provides one platform for accessing the energy in high altitude winds. The craft is maintained at altitude by its rotors operating in autorotation, and its equilibrium attitude and dynamic performance are affected by the aerodynamic rotor forces, which in turn are affected by the orientation and motion of the craft. The aerodynamic performance of such rotors can vary significantly depending on orientation, influencing the efficiency of the system. This thesis analyzes the aerodynamic performance of an autorotating rotor through a range of angles of attack covering those experienced by a typical autogyro through that of a horizontal-axis wind turbine. To study the behavior of such rotors, an analytical model using the blade element theory coupled with momentum theory was developed. The model uses a rigid-rotor assumption and is nominally limited to cases of small induced inflow angle and constant induced velocity. The model allows for linear twist. In order to validate the model, several rotors -- off-the-shelf model-aircraft propellers -- were tested in a low speed wind tunnel. Custom built mounts allowed rotor angles of attack from 0 to 90 degrees in the test section, providing data for lift, drag, thrust, horizontal force, and angular velocity. Experimental results showed increasing thrust and angular velocity with rising pitch angles, whereas the in-plane horizontal force peaked and dropped after a certain value. The analytical results revealed a disagreement with the experimental trends, especially at high pitch angles. The discrepancy was attributed to the rotor operating in turbulent wake and vortex ring states at high pitch angles, where momentum theory has proven to be invalid. Also, aerodynamic design constants, which are not precisely known for the test propellers, have an underlying effect on the analytical model. The developments of the thesis suggest that a different analytical model may be needed for high rotor angles of attack. However, adding a term for resisting torque to the model gives analytical results that are similar to the experimental values.
Date Created
2019
Agent

Euler-Lagrange modeling of vortex interaction with a particle-laden turbulent boundary layer

149880-Thumbnail Image.png
Description
Rotorcraft operation in austere environments can result in difficult operating conditions, particularly in the vicinity of sandy areas. The uplift of sediment by rotorcraft downwash, a phenomenon known as brownout, hinders pilot visual cues and may result in a potentially

Rotorcraft operation in austere environments can result in difficult operating conditions, particularly in the vicinity of sandy areas. The uplift of sediment by rotorcraft downwash, a phenomenon known as brownout, hinders pilot visual cues and may result in a potentially dangerous situation. Brownout is a complex multiphase flow problem that is not unique and depends on both the characteristics of the rotorcraft and the sediment. The lack of fundamental understanding constrains models and limits development of technologies that could mitigate the adverse effects of brownout. This provides the over-arching motivation of the current work focusing on models of particle-laden sediment beds. The particular focus of the current investigations is numerical modeling of near-surface fluid-particle interactions in turbulent boundary layers with and without coherent vortices superimposed on the background flow, that model rotorcraft downwash. The simulations are performed with two groups of particles having different densities both of which display strong vortex-particle interaction close to the source location. The simulations include cases with inter-particle collisions and gravitational settling. Particle effects on the fluid are ignored. The numerical simulations are performed using an Euler- Lagrange method in which a fractional-step approach is used for the fluid and with the particulate phase advanced using Discrete Particle Simulation. The objectives are to gain insight into the fluid-particle dynamics that influence transport near the bed by analyzing the competing effects of the vortices, inter-particle collisions, and gravity. Following the introduction of coherent vortices into the domain, the structures convect downstream, dissipate, and then recover to an equilibrium state with the boundary layer. The particle phase displays an analogous return to an equilibrium state as the vortices dissipate and the boundary layer recovers, though this recovery is slower than for the fluid and is sensitive to the particle response time. The effects of inter-particle collisions are relatively strong and apparent throughout the flow, being most effective in the boundary layer. Gravitational settling increases the particle concentration near the wall and consequently increase inter-particle collisions.
Date Created
2011
Agent