An examination of Mexican American adolescent and adult romantic relationships

152465-Thumbnail Image.png
Description
This dissertation examined Mexican American individuals' romantic relationships within two distinct developmental periods, adolescence and adulthood. Study 1 used latent class analysis to explore whether 12th grade Mexican Americans' (N = 218) romantic relationship characteristics, cultural values, and gender created

This dissertation examined Mexican American individuals' romantic relationships within two distinct developmental periods, adolescence and adulthood. Study 1 used latent class analysis to explore whether 12th grade Mexican Americans' (N = 218) romantic relationship characteristics, cultural values, and gender created unique romantic relationship profiles. Results suggested a three-class solution: higher quality, satisfactory quality, and lower quality romantic relationships. Subsequently, associations between profiles and adolescents' adjustment variables were examined via regression analyses. Adolescents with higher and satisfactory quality romantic relationships reported greater future family expectations, higher self-esteem, and fewer externalizing symptoms than adolescents with lower quality romantic relationships. Similarly, adolescents with higher quality romantic relationships reported greater academic self-efficacy and fewer sexual partners than adolescents with lower quality romantic relationships. Finally, adolescents with higher quality romantic relationships also reported greater future family expectations and higher academic self-efficacy than adolescents with satisfactory quality romantic relationships. To summarize, results suggested that adolescents engaged in three unique types of romantic relationships with higher quality being most optimal for their adjustment. Study 2 used latent growth modeling to examine marital partners' (N = 466) intra- and inter-individual changes of acculturative stress, depressive symptoms, and marital quality. On average across the seven years, husbands' acculturative stress remained steady, but wives' significantly decreased; partners' depressive symptoms remained relatively steady, but their marital quality significantly decreased. Although partners' experiences of acculturative stress were less similar than their experiences of depressive symptoms and marital quality, overall their experiences were interconnected. Significant spillover and crossover effects emerged between partners' initial levels of acculturative stress and depressive symptoms and between depressive symptoms and marital quality. Moreover, changes in husbands' depressive symptoms were negatively associated with changes in their marital quality. Overall, results suggested that partners' experiences were interconnected across time.
Date Created
2014
Agent

Improving the ability of the MMPI-2-RF to discriminate between psychogenic non-epileptic seizures and epileptic seizures

151552-Thumbnail Image.png
Description
The use of bias indicators in psychological measurement has been contentious, with some researchers questioning whether they actually suppress or moderate the ability of substantive psychological indictors to discriminate (McGrath, Mitchell, Kim, & Hough, 2010). Bias indicators on the MMPI-2-RF

The use of bias indicators in psychological measurement has been contentious, with some researchers questioning whether they actually suppress or moderate the ability of substantive psychological indictors to discriminate (McGrath, Mitchell, Kim, & Hough, 2010). Bias indicators on the MMPI-2-RF (F-r, Fs, FBS-r, K-r, and L-r) were tested for suppression or moderation of the ability of the RC1 and NUC scales to discriminate between Epileptic Seizures (ES) and Non-epileptic Seizures (NES, a conversion disorder that is often misdiagnosed as ES). RC1 and NUC had previously been found to be the best scales on the MMPI-2-RF to differentiate between ES and NES, with optimal cut scores occurring at a cut score of 65 for RC1 (classification rate of 68%) and 85 for NUC (classification rate of 64%; Locke et al., 2010). The MMPI-2-RF was completed by 429 inpatients on the Epilepsy Monitoring Unit (EMU) at the Scottsdale Mayo Clinic Hospital, all of whom had confirmed diagnoses of ES or NES. Moderated logistic regression was used to test for moderation and logistic regression was used to test for suppression. Classification rates of RC1 and NUC were calculated at different bias level indicators to evaluate clinical utility for diagnosticians. No moderation was found. Suppression was found for F-r, Fs, K-r, and L-r with RC1, and for all variables with NUC. For F-r and Fs, the optimal RC1 and NUC cut scores increased at higher levels of bias, but tended to decrease at higher levels of K-r, L-r, and FBS-r. K-r provided the greatest suppression for RC1, as well as the greatest increases in classification rates at optimal cut scores, given different levels of bias. It was concluded that, consistent with expectations, taking account of bias indicator suppression on the MMPI-2-RF can improve discrimination of ES and NES. At higher levels of negative impression management, higher cut scores on substantive scales are needed to attain optimal discrimination, whereas at higher levels of positive impression management and FBS-r, lower cut scores are needed. Using these new cut scores resulted in modest improvements in accuracy in discrimination. These findings are consistent with prior research in showing the efficacy of bias indicators, and extend the findings to a psycho-medical context.
Date Created
2013
Agent

The sensitivity of confirmatory factor analytic fit indices to violations of factorial invariance across latent classes: a simulation study

149971-Thumbnail Image.png
Description
Although the issue of factorial invariance has received increasing attention in the literature, the focus is typically on differences in factor structure across groups that are directly observed, such as those denoted by sex or ethnicity. While establishing factorial invariance

Although the issue of factorial invariance has received increasing attention in the literature, the focus is typically on differences in factor structure across groups that are directly observed, such as those denoted by sex or ethnicity. While establishing factorial invariance across observed groups is a requisite step in making meaningful cross-group comparisons, failure to attend to possible sources of latent class heterogeneity in the form of class-based differences in factor structure has the potential to compromise conclusions with respect to observed groups and may result in misguided attempts at instrument development and theory refinement. The present studies examined the sensitivity of two widely used confirmatory factor analytic model fit indices, the chi-square test of model fit and RMSEA, to latent class differences in factor structure. Two primary questions were addressed. The first of these concerned the impact of latent class differences in factor loadings with respect to model fit in a single sample reflecting a mixture of classes. The second question concerned the impact of latent class differences in configural structure on tests of factorial invariance across observed groups. The results suggest that both indices are highly insensitive to class-based differences in factor loadings. Across sample size conditions, models with medium (0.2) sized loading differences were rejected by the chi-square test of model fit at rates just slightly higher than the nominal .05 rate of rejection that would be expected under a true null hypothesis. While rates of rejection increased somewhat when the magnitude of loading difference increased, even the largest sample size with equal class representation and the most extreme violations of loading invariance only had rejection rates of approximately 60%. RMSEA was also insensitive to class-based differences in factor loadings, with mean values across conditions suggesting a degree of fit that would generally be regarded as exceptionally good in practice. In contrast, both indices were sensitive to class-based differences in configural structure in the context of a multiple group analysis in which each observed group was a mixture of classes. However, preliminary evidence suggests that this sensitivity may contingent on the form of the cross-group model misspecification.
Date Created
2011
Agent

Multilevel mediation analysis: statistical assumptions and centering

149409-Thumbnail Image.png
Description
Mediation analysis is a statistical approach that examines the effect of a treatment (e.g., prevention program) on an outcome (e.g., substance use) achieved by targeting and changing one or more intervening variables (e.g., peer drug use norms). The increased use

Mediation analysis is a statistical approach that examines the effect of a treatment (e.g., prevention program) on an outcome (e.g., substance use) achieved by targeting and changing one or more intervening variables (e.g., peer drug use norms). The increased use of prevention intervention programs with outcomes measured at multiple time points following the intervention requires multilevel modeling techniques to account for clustering in the data. Estimating multilevel mediation models, in which all the variables are measured at individual level (Level 1), poses several challenges to researchers. The first challenge is to conceptualize a multilevel mediation model by clarifying the underlying statistical assumptions and implications of those assumptions on cluster-level (Level-2) covariance structure. A second challenge is that variables measured at Level 1 potentially contain both between- and within-cluster variation making interpretation of multilevel analysis difficult. As a result, multilevel mediation analyses may yield coefficient estimates that are composites of coefficient estimates at different levels if proper centering is not used. This dissertation addresses these two challenges. Study 1 discusses the concept of a correctly specified multilevel mediation model by examining the underlying statistical assumptions and implication of those assumptions on Level-2 covariance structure. Further, Study 1 presents analytical results showing algebraic relationships between the population parameters in a correctly specified multilevel mediation model. Study 2 extends previous work on centering in multilevel mediation analysis. First, different centering methods in multilevel analysis including centering within cluster with the cluster mean as a Level-2 predictor of intercept (CWC2) are discussed. Next, application of the CWC2 strategy to accommodate multilevel mediation models is explained. It is shown that the CWC2 centering strategy separates the between- and within-cluster mediated effects. Next, Study 2 discusses assumptions underlying a correctly specified CWC2 multilevel mediation model and defines between- and within-cluster mediated effects. In addition, analytical results for the algebraic relationships between the population parameters in a CWC2 multilevel mediation model are presented. Finally, Study 2 shows results of a simulation study conducted to verify derived algebraic relationships empirically.
Date Created
2010
Agent