Zinc oxide transparent thin films for optoelectronics
Description
The object of this body of work is to study the properties and suitability of zinc oxide thin films with a view to engineering them for optoelectronics applications, making them a cheap and effective alternative to indium tin oxide (ITO), the most used transparent conducting oxides in the industry. Initially, a study was undertaken to examine the behavior of silver contacts to ZnO and ITO during thermal processing, a step frequently used in materials processing in optoelectronics. The second study involved an attempt to improve the conductivity of ZnO films by inserting a thin copper layer between two ZnO layers. The Hall resistivity of the films was as low as 6.9×10-5 -cm with a carrier concentration of 1.2×1022 cm-3 at the optimum copper layer thickness. The physics of conduction in the films has been examined. In order to improve the average visible transmittance, we replaced the copper layer with gold. The films were then found to undergo a seven orders of magnitude drop in effective resistivity from 200 -cm to 5.2×10-5 -cm The films have an average transmittance between 75% and 85% depending upon the gold thickness, and a peak transmittance of up to 93%. The best Haacke figure of merit was 15.1×10-3 . Finally, to test the multilayer transparent electrodes on a device, ZnO/Au/ZnO (ZAZ) electrodes were evaluated as transparent electrodes for organic light-emitting devices (OLEDs). The electrodes exhibited substantially enhanced conductivity (about 8×10-5 -cm) over conventional indium tin oxide (ITO) electrodes (about 3.2×10-5 -cm). OLEDs fabricated with the ZAZ electrodes showed reduced leakage compared to control OLEDs on ITO and reduced ohmic losses at high current densities. At a luminance of 25000 cd/m2, the lum/W efficiency of the ZAZ electrode based device improved by 5% compared to the device on ITO. A normalized intensity graph of the colour output from the green OLEDs shows that ZAZ electrodes allow for a broader spectral output in the green wavelength region of peak photopic sensitivity compared to ITO. The results have implications for electrode choice in display technology.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2010
Agent
- Author (aut): Sivaramakrishnan, Karthik
- Thesis advisor (ths): Alford, Terry L.
- Committee member: Schroder, Dieter K.
- Committee member: Newman, Nathan
- Committee member: Theodore, David N
- Publisher (pbl): Arizona State University