Description
Advanced composites are being widely used in aerospace applications due to their high stiffness, strength and energy absorption capabilities. However, the assurance of structural reliability is a critical issue because a damage event will compromise the integrity of composite structures

Advanced composites are being widely used in aerospace applications due to their high stiffness, strength and energy absorption capabilities. However, the assurance of structural reliability is a critical issue because a damage event will compromise the integrity of composite structures and lead to ultimate failure. In this dissertation a novel homogenization based multiscale modeling framework using semi-analytical micromechanics is presented to simulate the response of textile composites. The novelty of this approach lies in the three scale homogenization/localization framework bridging between the constituent (micro), the fiber tow scale (meso), weave scale (macro), and the global response. The multiscale framework, named Multiscale Generalized Method of Cells (MSGMC), continuously bridges between the micro to the global scale as opposed to approaches that are top-down and bottom-up. This framework is fully generalized and capable of modeling several different weave and braids without reformulation. Particular emphasis in this dissertation is placed on modeling the nonlinearity and failure of both polymer matrix and ceramic matrix composites.
Reuse Permissions
  • Downloads
    PDF (4.8 MB)
    Download count: 1

    Details

    Title
    • Micromechanics based multiscale modeling of the inelastic response and failure of complex architecture composites
    Contributors
    Date Created
    2011
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2011
    • bibliography
      Includes bibliographical references (p. 167-172)
    • Field of study: Aerospace engineering

    Citation and reuse

    Statement of Responsibility

    by Kuang Liu

    Machine-readable links