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ABSTRACT

Advanced composites are being widely used in aerospace applications due to
their high stiffness, strength and energy absorption capabilities. However, the
assurance of structural reliability is a critical issue because a damage event will
compromise the integrity of composite structures and lead to ultimate failure. In
this dissertation a novel homogenization based multiscale modeling framework
using semi-analytical micromechanics is presented to simulate the response of
textile composites. The novelty of this approach lies in the three scale
homogenization/localization framework bridging between the constituent (micro),
the fiber tow scale (meso), weave scale (macro), and the global response. The
multiscale framework, named Multiscale Generalized Method of Cells
(MSGMC), continuously bridges between the micro to the global scale as
opposed to approaches that are top-down and bottom-up. This framework is fully
generalized and capable of modeling several different weave and braids without
reformulation. Particular emphasis in this dissertation is placed on modeling the
nonlinearity and failure of both polymer matrix and ceramic matrix composites.
Results are presented for the cases of plain, twill, satin, and triaxially braided
composites. Inelastic, failure, strain rate and damage effects are included at the
microscale and propagated to the global scale. MSGMC was successfully used to
predict the in-plane material response plain and five harness satin woven polymer
composites, triaxially braided polymer composite and both the in-plane and out-

of-plane response of silicon carbide ceramic matrix composites.
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Chapter 1
1. INTRODUCTION

1.1. Motivation

Advanced composites are being widely used in aerospace applications due
to their high stiffness, strength and energy absorption capabilities. However, the
assurance of structural reliability is a critical issue because a damage event will
compromise the integrity of a composite structures and lead to ultimate failure.
Composites are often employed in impact damage susceptible locations. The
associated dynamic response with an impact event is complex due to complicated
stress wave patterns, material nonlinearity and the inherent nonlinearity associated
with continuously evolving geometry. A particular problem of interest is the
impact response of composite fan containment system. Current and next
generation fan casings are being manufactured not from metals or traditional
laminated composites, but braided and woven fabric composites. A concern for
manufacturers is the ability of the fan containment system to meet Federal
Aviation Agency (FAA) standards for blade-out containment. Current testing
methods and design procedures are expensive and time consuming; a modeling
approach is necessary to take full advantage of the composite material’s

capabilities.

Traditional analysis methods and material characterization for composites
typically considers only the macroscale or structural level response. Many
methods are based on lamination theories or anistropic elasticity analysis. These

methods are inadequate when applied to a complex structure, such as the fan
1



casing, with a complex material such as a triaxially braided composite. Research
in multiscale modeling, especially applied to composite materials, is an emerging
topic and is particularly well suited for this problem. Multiscale modeling allows
for the analysis of composites at multiple length scales and can track stress,
damage, and other state variables throughout critical stages. Multiscale modeling
is essential to capturing the most important damage events in a complex structure,

where damage can exist at the fiber level, tow level, and braid level.

1.2. Background

Textile and braided composites are both architecturally and mechanically
complex composite materials. In the aerospace industry, there are several
mainstream weaves and braids; Fig. 1.1 illustrates the most common of those.
Textile and braided composites differ from traditional laminated composites, in
that each lamina contains fibers in more than one direction, achieved through
weaving or braiding. This produces desirable effects, such as reduce propensity
for delamination, thicker lamina, quasi-isotropic fabrics. However, often
maximum volume fraction and subsequently strength are sacrificed. In contrast to
traditional unidirectional laminated composites, textile and braided composites
often have varying orientations due to undulation, warp, weft, and braid tows.
Damage mechanisms in these composites contain all those of traditional
laminated composites plus additional modes that arise due to their geometric
features. Typically the relevant physical mechanisms that need to be considered,
in no particular order, are matrix nonlinearity, matrix and fiber failure, tow

splitting/first matrix cracking, fiber/matrix debonding, tow/matrix debonding, and
2



fiber buckling/kinking. From this list, it is apparent that these mechanisms occur
at various length scales occurring on the order of <10 microns to >1cm.
Development of a high fidelity model should contain the most relevant damage
mechanisms and formulation of a multiscale modeling is the most practical

method to implement those although various techniques have been developed.

Plain Twill Satin

Triaxial

Fig. 1.1 Commonly Used Weave Patterns

There are four primary methods used for modeling textile and braided
composites and are illustrated in Fig. 1.2. The first approach shown is referred to
as a fully homogenized weave model. In this type of modeling, the architecture of
the weave is not explicitly represented and a “smeared” (homogenized) approach,
where the material is considered completely homogeneous, is used. These are
typically orthotropic, transversely isotropic or anisotropic constitutive models
carefully formulated to match the macroscopic or overall global response of a

plain weave laminate. Most often these models focus on capturing the highly

3



nonlinear shear response and the hydrostatic effects, typically employing damage
or progressive damage mechanics techniques to achieve this. The advantage of
this type of approach is the simplicity of use and low computational effort. The
disadvantages are a lack of fidelity and possibility of disregarding or
overestimating damage mechanisms that are architecturally dependent, i.e. when
the architecture changes phenomenon such as first matrix cracking will change
and will not be reflected in this type of approach. A typical application of this
approach is structural component level modeling. Due to the fast computation
time and the widespread use of stiffness driven models, this approach is
particularly well adapted for modeling low stress level composites, particularly
outside hot spots. An exhaustive literature review is not presented here because

the goals of this approach differ from the work presented in this dissertation.

The second approach shown in Fig. 1.2 is typically referred to as
micromechanics modeling. In this approaches the architecture is specifically
modeled and usually discretized into critical subvolumes, with each subvolume
containing either resin or a homogenized fiber tow. A discerning feature of this
approach is modeling the fiber tow homogeneously, as opposed to explicitly
modeling the individual fibers as in the third approach. The benefits and
disadvantages are discussed further on. Once the material has been discretized
into subvolumes, iso-strain, iso-stress, or mixed boundary conditions are then
assumed and a macro-micro relationship is derived. These are referred to as
analytical methods or analytical micromechanics. However, a second set of

approaches using finite element techniques to model the architecture have also
4



Fully Homogenized Weave

= =

Weave with Homogenized Fiber Tows

e
AL XA O

Weave with Explicitly Modeled Microstructure

Multiscale Modeled Weave

Fig. 1.2 Various Modeling Techniques for Textile Composites

been developed, known is numerical techniques or finite element based
micromechanics. Furthermore, there two approaches to ascertain the geometric
microstructure. The most common type is an approach based on idealized
repeating unit cells, i.e. a material without imperfections. In contrast to the fully
homogenized models, these analytical models are often generalized and are

equipped to handle changes in features such as fiber volume fraction, tow spacing,

5



thickness, and etc. These methods are mostly associated with analytical
micromechanics; however, there are a few finite element based approaches in this
realm. The second most common type is based on the actual microstructure
obtained from optical image or computed tomography scan. These are almost
exclusively associated with finite element based approaches. More often than not,
these approaches formulate a representative volume element of the composite for
their analysis. These techniques are computationally intensive are used to study a

specific material.

One of the first significant reported publications in analytical
micromechanics modeling was the works of Halpin 1971. This work envisioned
fabric composites (both 2D and 3D) as a laminate analysis of the “crimped” and
“non-crimped” portions of the fabric. This allowed for the modeling and
prediction of the in-plane elastic constants and thermal expansion coefficients.
This approach and variations are commonly used today in industry and other
applications requiring only elastic response. Ishikawa and Chou (1982) presented
three analytical models, the “mosaic model”, “fibre undulation model”, and
“briding model”. Through use of all three models, the in-plane mechanical elastic
constants and “knee behaviour” for plain, twill and satin composite could be
predicted. The “mosaic model”, remains a very popular model in literature for
elastic analysis and has been extended by other authors. Ishikawa and Chou
(1982) also used their “mosaic model” to examine hybrid fabric composites,
defined as fabric composites with different fiber tow sizes. After these

publications, there was a lull in research and interest in fabric composites until a
6



resurgence occurred in the late 1980s. At this point, two main methods for
analysis began emerging: analytical and finite element approaches. In addition,
the use of braided composites became popular and subsequently research in the
modeling these materials also began emerging. The works of Naik and his
colleagues (Naik 1994, Naik 1995) extended the use of analytical methods for
modeling the elastic constants, nonlinear shear behavior, nonlinear geometric
effects (crimping and straightening of tows), and overall failure. Naik applied his
model to both woven and braided composites with success. Other researchers
(Stanton and Kipp, Jortner, Ko and Pastore, Ko, Dow and Ramnath, Masters and
Fedro and Ifju, Dadkah, Swanson, Cox and Flanagan, Tabiei and lvanov) have
also developed In contrast to the approximation techniques used in the analytical
techniques, which provide computationally efficient results that sacrifice on
accuracy, finite element methods can provide a high fidelity geometric model and
highly accurate local stress fields at the cost of computational efficiency in both
analysis and preprocessing. Finite element methods are also less generalized then
equivalent analytical methods. Whitcomb and his colleagues (Whitcomb 2000,
Whitcomb 2004) expanded finite element techniques to model textile composites.
This approaches typically involves generating a finite element mesh of a weave
repeating unit cell and applying carefully formulated boundary conditions to
determine the response of the composite. Other authors (Kriz, Binienda, Quek
Waas) have also taken similar approaches to modeling textiles and fabrics for

various applications.



In all previously cited works, a common fundamental assumption regarding
the behavior of the fiber tow bundles is applied: the fiber tow bundles can be
represented as a homogeneous transversely isotropic material. This assumption is
valid under certain conditions, such as low stress, strongly bonded (fiber/matrix)
systems, and static loading. Determination of tow elastic properties is a critical
issue with this approach. Many authors estimate or apply rudimentary
micromechanics, such as strength of materials or rule of mixtures, to determine
the properties. Another issue of this approach is the assumption of linear elastic
behavior when, in fact, the fiber tow response is high nonlinear and inelastic,

much like a unidirectional laminate.

The third approach shown in Fig. 1.2, explicitly models each constituent in
the composite. While this approach would provide the highest geometric fidelity
and possibly highest accuracy, it is currently impractical to implement.
Development of a 3D model and explicitly modeling each fiber, (on the order of
10,000-100,000 fibers for a typical RUC) would require an extraordinary amount
of time in experimental characterization and model simulation. In contrast,
simulations of explicit microstructure in metallic materials often consider less
than 1000 grains, 1 to 2 orders of magnitude less than the requirement for
composites. This type of approach would also be “tied” to a specific

microstructure at a point for a given sample or component.

The fourth approach is known as a multiscale modeling, wherein the goal is
to encompass the accuracy of explicitly modeling the microstructure, while

retaining computational efficiency. There are two primary subsets of multiscale
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models developed with different purposes. One subset focuses on a high fidelity
modeling of the architecture, similar to the finite element micromechanics
mentioned previously, in order to study the nuances of damage initiation and
evolution. These models are rarely used to model large structures or components
as they require a significant amount of computational time and may not have been
derived in a proper constitutive model framework for implementation within a
commercial software, such as an Abaqus user subroutine. Examples of these
include the work of Kollegal and Ernst et al. The second subset focuses on the
development of multiscale models within a constitutive framework for
implementation within commercial software. These models are typically
analytical or semi-analytical, computationally efficient and applicable to a variety
of weaves. The works of Tabiei, as well as the work presented in this dissertation,

fall into this category.

In this dissertation a novel homogenization based multiscale modeling
framework using semi-analytical micromechanics is presented. The novelty of
this approach lies in the three scale homogenization/localization framework
bridging between the constituent (micro), the fiber tow scale (meso), weave scale
(macro), and the global response. The multiscale framework, named Multiscale
Generalized Method of Cells (MSGMC), continuously bridges between the micro
to the global scale as opposed to approaches that are top-down and button-up. In
addition, this framework is fully generalized and capable of modeling several

different weave and braids without reformulation. Particular emphasis in this



dissertation is placed on modeling the nonlinearity and failure of both polymer

matrix and ceramic matrix composites.

1.3. Objectives of the work

This research aims at the following principal objectives:

» Develop a generalized multiscale modeling methodology for complex
composite materials considering nonlinear constitutive effects including damage
and failure.

» Characterize various complex composites (weaves and braids) and apply
those within the multiscale modeling methodology to predict their response.

» Analyze materials and determine the relevant length scales necessary for
efficient analysis and the necessary detail for accurate modeling.

» Experimentally validate and verify the methodology at multiple length
scales.

1.4. Outline of the report

The report is structured as follows:

Chapter 2 introduces the weave architecture, characterization, and
experimental observations for use in the multiscale modeling theory. This chapter
covers two types of architectures: woven and braided fabrics. It covers the
geometric constraints of the weave architecture as well as assumptions made for
the analysis.

Chapter 3 discusses the background and theory of the multiscale modeling
methodology used to model the complex composites. The chapter begins with the

background and need for multiscale modeling, particularly in composite
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applications. Next an overview of the various micromechanics formulations is
presented and how they are applied to the new methodology, a Multiscale
Generalized Method of Cells (MSGMC).

Chapter 4 focuses on the applying MSGMC to modeling triaxially braided
composites with carbon fiber and polymer constituents. Results are presented for
elastic, plastic, and viscoplastic for two types of triaxial braids. Results are
compared to experimental, lamination theory and finite element techniques.

Chapter 5 applies MSGMC to modeling woven composites with carbon
fiber and polymer constituents. Results are presented for elastic, plastic, and
viscoplastic for plain and five harness satin weaves. These are compared to other
micromechanical (and multiscale), experimental, and finite element techniques. In
addition, an exhaustive parametric study was performed to assess the sensitivity
of the model parameters.

Chapter 6 applies MSGMC to modeling woven composites with
ceramic/ceramic constituents. Particular research effort was focused on modeling
the voids at the weave and tow scales, the fiber interface and the damage
mechanics of the matrix. Results are compared to experimental studies and a
parametric study was performed to assess sensitivity.

Chapter 7 focuses on the future directions of the current research. There are
four main topics for future research: 1) Further development of MSGMC, 2)
Implementation of material constitutive modeling, 3) Detailed material
characterization and analysis, 4) Coupled implementation with finite element
analysis.

11



Chapter 2
2. WOVEN AND BRAIDED COMPOSITE CHARACTERIZATION

2.1 Introduction

Traditional laminated composites with unidirectional aligned fibers have
simple idealized representative architectures. Woven and braided composites have
more complex architectures and require a more detail analysis to characterize the
parameters necessary to capture the most important geometric effects. Typically,
parameters need to be characterized at multiple length scales and can be either
dependent or independent on parameters at other length scales. Woven fabric
composites are generally orthogonal, but this is not necessarily always the case.
When the weaves are at an angle less than perpendicular they are often called
“biaxial” weave or braid. Woven fabrics typically consist of two perpendicular
tows or yarns of fabric, whereas braided fabrics consists of three or more. This
research focuses on orthogonal/perpendicular woven fabrics as well as triaxially

braided fabrics.

2.2 Orthogonal Weaves

There are several types of orthogonal weaves, but not all are commonly used
in the aerospace industry as a composite constituent. Many types of fabrics are
products of the textile industry and are still unexplored in the area of aerospace
composite structures. Some common weaves include: plain, twill, satin, basket,
and crows foot. These are illustrated in Fig. 2.1. Characterization will be
presented for plain, twill and satin weaves. In the following characterization, the

following assumptions/approximations are made:
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1. The fiber tows are assumed to have rectangular cross section.
2. The undulation is discontinuous and occurs only between tows.
3. The twist of the tows is negligible.

4. Tow fiber volume fraction is uniform throughout the RUC.

Plain Twill Satin

Crows foot Basket

Fig. 2.1 Orthogonal Textile Weave Patterns

2.2.1 Plain Weave

Using the previously discussed assumptions, the plain weave RUC can be
dimensioned as shown in Fig. 2.2. The plain weave has a one-over-one-under
fabric pattern. This is one of the more commonly used fabrics for aerospace
applications. As will be explained further in detail, the weave will need to be
discretized into orthogonal three dimensional parallel piped subvolumes, known
as subcells. The plain weave will be discretized into 5x5x4 subcells. The RUC is
discretized into subcells by using key geometric features as boundaries, i.e. the

tow boundaries, and can be seen in Fig. 2.3. In this figure, the blank subcells
13



represent the matrix material and the subcells with a hatch pattern represent the
tow subcells. The orientation angle is represented by the angle of the fibers, i.e.

orientation of the hatch pattern.

Fig. 2.2 Discretized Plain Weave Architecture



=2

Fig. 2.3 3D Subcell Discretization of Plain Weave Composite

Due to the assumptions previously stated, it is important to ensure that the overall

fiber volume fraction, V., is correctly represented, which depends on the tow
fiber volume fraction, v, ., fiber tow width, w, tow spacing, &, and the ply

thickness, t. The total volume fraction of the RUC can be expressed by summing

the fiber volumes over all the subcells and dividing by the RUC volume.

8(“’2&)+4(W2t)

f = Vf (21)
(2W+ 25)(2W+ 25)t o
This can be further simplified to
W
Vf = (W+5)mew (22)

From Eq. (2.2) it can be seen that thickness is not directly present. In application,

thickness and V, ~are typically inversely proportional, but this is not always true.

The geometry of the RUC can be constrained based on any three of the four
15



variables, shown in Eq. (2.2). Specifying all four variables will violate the
geometric constraints. The last parameter needed to calculate is the undulation
angle for the subcells containing tows that are undulating. Using the assumption
that the undulation is uniform across one subcell and discontinuous, the

undulation angle can be approximated by,

t
0 = arctan (5) (2.3)

The undulation angle is present in the following subcells for the (a,B,y) coordinate
system depicted in Fig. 2.3: (2-3,2,1), (2-3,4,1), (2-3,1,2), (2-3,3,2), (2 3,5,2), (2-
3,2,3), (2-3,4,3), (2-3,1,4), (2-3,3,4), (2 3,5,4), (2-3,2,5), and (2-3,4,5). The
dimensions for each subcell are represented by the variables D ,H, and L,
representing the dimensions in the 1-, 2-, and 3-direction, respectively. For the

plain weave the dimensions are shown in (2.3).

D={t/4t/4,t/41t]4}
H={5,w,06,w,5} (2.4)

L

{6, w,8,w,6}

2.2.2 Twill, Harness Satin, and Other Weaves

Two other common weaves are the twill and 5 harness satins (Figs. 2.4 and
2.5). A twill weave is characterized by its distinctive diagonal pattern seen in
bulk. The twill pattern can be woven in many different configurations, but the
most common is the 2x2 which will be analyzed in this study. This means that

each tow goes over-two-under-two. The adjacent tows are offset by one tow to

16



produce the diagonal effect. Fig. 2.4 demonstrates the key features of a twill

pattern.

Fig. 2.4 Twill Weave Diagonal Pattern

Harness satin weaves are unique because no adjacent tows undulate at the same
point. Typically, harness satin weaves are denoted with a numerical character
prefacing the word “harness satin”, i.e. ““5-harness satin”. This denotes a 4x1
pattern, where a tow goes over four and under one. Another common pattern is
the 8-harness satin where this is a 7x1 pattern. Fig. 2.5 shows the key features of a

5-harness satin weave.

17



Fig. 2.5 5 Harness Satin Weave Pattern

The geometry of these fabrics will need to be constrained in the same manner
as that of the plain weave, and both the twill and 5-harness satin are constrained
by Eq. (2.2). It can also be shown that any other orthogonal weave can be
constrained by this relationship. The undulation angle is also approximated in the
same manner as that of the plain weave. Subcell stacks 2-5 are the ones
containing the undulating tows, this is explained further on. To discretize the twill
and 5-harness satin weaves, the same methodology used on the plain fabric is
employed. For easier visualization, the discretization will be described in terms of
subcell stacks, where these stacks correspond to through thickness groups of
subcells (similar to the subcells shown in Fig. 2.3). A total of 11 unique stacks can
be assembled together to form each weave pattern, like a mosaic, as shown in Fig.
2.6. For both the twill and 5-harness satin, the configuration is shown in Figs. 2.7
and 2.8, respectively. Any other orthogonal weave can be assembled using these
subcell stacks. Each stack has the same thickness dimensions as specified in D of

Eq. 2.4. The dimensions of both weaves are shown below. If any refinement of
18



the geometry or subcell changes are made, these dimensions are invalid. For a

twill weave, the subcell dimensions are

D={t/4t/4,t/41t]4}
H ={5,w,8,w,5,w,5,w,5} (2.5)

L={5,W,5,w,5,w,5,w,d}

and for a 5 harness satin the subcell dimensions are

D={t/4,t/4t/41/4}
H ={5,w,8,w,5,w,5,w,5,w,5} (2.6)

L={5,W,5,w,5,W,5,W,5,W,5}.

Fig. 2.6 Subcell Stacks for Orthogonal Weaves

19



b=
b
b
b=
i
b
i

[

9 |

8

7 -

6

5]

4

3

2 -

1 -

11 3 11 4 11 6 11 5 11
3 10 9 10 2 1 7 1 3
11 5 11 3 11 4 11 6 11
T 1 3 10 9 10 2 1 7
11 6 11 5 11 3 11 4 11
2 1 T 1 3 10 9 10 2
11 4 11 6 11 5 11 3 11
9 10 2 1 7 1 3 10 9
11 3 11 4 11 6 11 5 11
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Fig. 2.8 5 Harness Satin Subcell Stack Configuration
2.3 Triaxial Braids
Triaxial braids can be split into two categories: a) traditional triaxial braid,
the more commonly used fabric, and b) true triaxial braid. Fig. 2.9 shows the
typical components of a triaxial weave composite. The traditional triaxial braid
differs from the true triaxial in several aspects, and a comparison between them is

shown in Fig. 2.10 and Fig. 2.11.
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Axial

Transverse

Fig. 2.9 Typical Triaxial Braid Components

First, in the true triaxial, all tows have the same cross sectional area. On the
other hand, the traditional triaxial has an axial tow with twice the cross sectional
area as the braided tows. To maintain triaxiality, there is twice the number of
braided tows as compared to axial tows. Second, in the traditional braid, the axial
tow does not undulate, while the true triaxial has all tows undulating evenly and
uniformly. Characterizing the geometry of a triaxial braid is more involved than
of the orthogonal weaves. A detailed derivation and characterization of all the

parameters is shown in the following sections.

” -

Fig. 2.10 Traditional Triaxial Braid Fig. 2.11 True Triaxial Braid
2.3.1 Tradiational Triaxial Braids
A typical architecture of a traditional triaxial braided composite is shown in
Fig. 2.10 with the repeating unit cell indicated by the black box. The triaxial braid
RUC consists of straight axial fiber tows and braided fiber tows oriented at an

angle 6. It is assumed for this analysis that the architecture being analyzed can be
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represented by an idealized homogenized RUC, thus imperfections in the
architecture are not considered.

The traditional triaxial braided composite is composed of three significant
volumes: pure matrix, axial tows, and braided tows. The braided tows are offset
from the axial tows at an angle 6, known as the braid angle. The total volume of
the RUC is the summation of each individual volume as denoted in the following
equation, where subscripts 0° denotes the axial tow, =6 denotes the braided tows,

and m denotes the pure matrix.

V=V, +V,,+V, (2.7)

The overall volume fraction of fibers (filaments, as opposed to tows) can be
computed by identifying the fiber volume fractions in both the axial and braided
tows and then determining the total volume of fibers in the RUC. Subscript f in
the following equations denotes the fiber (as opposed to the tow).

V, V, +V, V,, (2.8)
V==

The volume of the RUC in Equations (2.7) and (2.8) was previously expressed in
terms of the volumes of the tows and matrix, but it is also useful to express this in
terms of physical parameters that are typically specified during manufacturing
processes or can be identified in micrographs, such as the tow width, spacing and
thickness. The RUC volume can be described as a parallelepiped consisting of
length (L), height (H) and depth (D). To generalize the traditional triaxial braided

composite architecture, it is assumed that the axial and braided tows have
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independent geometries. The RUC volume is only dependent on the width and
spacing of the braided tows and the thickness of both the axial and braided tows.
It has no direct dependence on the axial tow width, but this does not imply that it
is arbitrary, as will be shown later. In the following, t denotes the thickness and w
denotes the width of a tow or RUC, while w’ denotes the spacing between tows.

V =DHL (2.9)

2
H_
cosH(W Wy )

D=t, +2t,

Since the axial tows do not undulate, their volume can be directly computed based
on the cross-sectional area of each tow, A, and the length of the RUC. It must be
noted that the coefficient 2 in (2.10) comes from the presence of two axial tows in

the RUC.

2A, (2.10)

SIHH(W+6 +W +0)

Vo° - Ab°

The volume of the braided tows is more difficult to determine directly, but can be
conveniently written as a proportion to the volume of the axial tows expressed as

a scalar m. This scalar m can be approximated for small undulations as shown,

vV, . 2.11
% —m= A cosé (211)
ViH *0
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For the simple case where the cross sectional areas of the axial tow is twice that of
the braided tow, with a braid angle of 60 degrees, this results in m= 0.5.

Substitution of Equations (2.9), (2.10), and (2.11) into Equation (2.8) yields,

] (2.12)

m

Vf+
Ap |V + =

V, =

1 1
(COSHJ(WJ:H +Ww 19)(t00 +2t,,)

Typically, fiber volume fraction is thought of as a specified property in which the
braided tow spacing is not specified. Therefore it is beneficial to rewrite Equation

(2.12) as,

. f
Wy = W,

1
=t 42t
(cos@](o o)

At this point, the architecture is constrained in terms of several parameters, but

1 V, (2.13)
oV +—
g Vol ' m

the tow cross-sectional area is still not defined. Therefore an assumption is made
regarding the cross-sectional area of the tows. For simplicity of integration with
the generalized method of cells, the present analysis considers tows to be of a
rectangular cross section of width w and thickness t. This yields a final equation

providing the braided tow spacing expressed as follows.

1 Vftg (2.14)
(Wootoo)vf[vfoo + - J
Wy = W,

1
=t 2t
(cos@}(" o)
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The rectangular approximation of tows is acceptable since the overall fiber
volume fraction and local fiber volume fractions are accurately represented. The
effective elastic moduli and first failure modes are considered in this study, thus
the representation rectangular cross section of the tows provides acceptable
results. If nonlinear damage progression and failure is to be considered, a more
refined cross section may be necessary. The axial tow spacing is not arbitrary, as
mentioned previously, and can be determined using Equations (2.9) and (2.13)
expressed as follows,

(2.15)

w' :L(W +W',)—W
© cosgt 0 O

Lastly, the undulation angle of the braided tows can be defined in terms of the
thickness and the braided tow spacing as follows,

(2.16)

to+t,
Iia

sin@

@ =arctan

The resulting characterization of the traditional triaxial braided composite
architecture is dependent on ten parameters. Table 2.1 lists all the parameters with
additional suggestions as to how they may be determined. Typically, in an

idealized problem, it is assumed that the tow fiber volume fractions v, and V, |

are equivalent and uniform. If the cross-sectional areas are assumed to be
rectangular, it is simplified to only seven parameters being needed. The two
parameters defining tow spacing are constrained based on the parameters listed in

Table 2.1.
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Table 2.1 Triaxial Braided Composite Parameters Determination Methods

Parameter Determination Method
V, ASTM D3171
Vi, Vi, Assume 80% for PMC
W, .w,,.0.t .t Optical microscope
o o' measurement
Shape function or
A A P

approximation

Two unique types of triple periodic repeating unit cells, of size DxHxL and

matching the dimension given by the microstructural parameters, were discretized

into n, xn,xn. parallelepiped subcells, with each subcell having dimensions d*

xh®x1" . A simplified RUC was developed for the purpose of reducing
computation effort and for eventual implementation in finite element analysis and
optimization algorithms. A refined RUC has also been developed for detailed
material characterization purposes and provides more detailed local stress/strain

states (Fig. 2.12).
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Fig. 2.12 Traditional Triaxial Braid Discretized RUCs (top simplified, bottom

refined)

The simplified model discretizes the traditional triaxial braided composite RUC
into four architecturally governed sections through the width and four through the
thickness as shown in Fig. 2.12. The through-width subcells are separated into
sections containing axial tows (I'=1 and I'=3) and those that do not (I'=2 and
I'=4). The through-width subcells are separated into sections of either axial or
braided tows. For subcells with A=1 and A=4, the properties from the mesoscale

are rotated by an angle 0 to represent the braid; subcells '=2 and I'=4 are rotated

28
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once more by angle ¢ to represent the undulation. The end result is that each
subcell contains only a single tow material, either axial or braided, with correct
orientation. No pure matrix regions are explicitly represented. To maintain a true
representation of the previously described architectural parameters, the geometric
dimensions and fiber volume fraction of each subcell are analytically determined

and expressed in terms of the architectural parameters by,

1 (2.17)
d'=—"—(w,+Ww',
Sinﬁ( ot W)
h'=h*=t,,
h*=h®=t,
"= =w,

=W —L(W +W',)
o cosor 0

With the exception of subcells containing axial tows, all subcells have an
effective volume fraction that encompasses the resin rich sections which are not
directly represented. As can be seen from Equation (2.14), as the fiber volume

fraction increases, w',, decreases along with the volume of resin rich sections.

This indicates that at high volume fractions, the simplified model is not an
accurate approximation. The subcell effective volume fractions are determined by
enforcing the correct overall volume fraction as well as the correct volume
fraction per column and per row of the subcells. The overall fiber volume fraction
in the simplified RUC is matched analytically to that of the true RUC, with the

final expression.
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Table 2.2 Simplified RUC Effective Fiber Volume Fraction by Subcell

Subcell {A,B,I'} Fiber volume fraction

{2,1,1},{2,1,3},{3,1,1},{3,1,3} Vfoo

{1,1,1}{1,1,3}{4,1,1} {4,1,3} "
{1‘ )jvfw

{1-4,1,2},{1-4,1,4}

. 2.18
Vf — Vf tO +1- Wia Vf ti@ 7/1 ( )
o+, W, (Wep +W'ey) | 5t +t |71 +7,

+ 7/1+)/va _ﬁ 1— Wte ' me 72
V2 V2 WOO(WiH—l_WiH) SNt

The expressions for the fiber volume fractions of each subcell are given in Table

2.2 and have been determined through the use of Equations (2.7)-(2.16). It is
important to note that undulation is represented in the I'; and I'4 subcell columns
through rotation of the effective microscale properties of the braided tow by angle
0.

A refined RUC that further discretizes the traditional triaxial braided
composite RUC into subcells that explicitly include the resin rich regions is
shown in Fig. 2.12. Note that a top view of the RUC is shown in this case. This
RUC takes into consideration the braided tow spacing, which was only effectively
represented in the simplified model. The through-thickness discretization is
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identical to that of the simplified model, separating the axial and braided tows.
The in-plane discretization also follows a similar methodology to the simplified
RUC, where subcell dimensions are governed by geometrical parameters. This is
in sharp contrast to a typical finite element mesh, in which element shape and
dimensions lack physical meaning. In Fig. 2.12, key dimensions are shown and
defined in Table 2.3. These dimensions are derived from the architectural
parameters previously mentioned. The refined traditional triaxial braided
composite RUC contains a total of 572 subcells.
2.3.2 True Triaxial Braid

Unlike the traditional triaxial braid architecture, whose axial tows are
merely laid straight between the biased (+£0°) tows, the true triaxial braid
architecture offers the unique property of having the axial fiber tows interweaved
with the biased tows. Fig. 2.13 shows a more detailed view of the RUC for the
true triaxial braid. Since the axial tows are braided through the biased tows in a
manner such that the axial tow always lies on top of the +6 tows and below the —0
tows, while the +0 tows always lie on top of the —0 tows, not only are the axial
tows interleaved through the biased tows, but also the biased tows are undulated
in the +6 material directions. Therefore, this true triaxial braid architecture
presents a unique microstructure that has yet to be fully developed with

applications as opposed to traditional triaxial braided composites.
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Table 2.3 Refined RUC Subcell Dimension Parameters

Parameter Value
X1 1 ,
— (W, —W',
ZsinH( 0= W)
X2 WlirB
sin@
X3 1 ,
—(w,, —W',
2c0549( o= W)
X4 W'ta
2c0s0
X 1
5 1wl +w, —w
2\ 2cosé@ 0
Xe w', 1( w,
0 L 0y
4cos@ 2\ 2cosfd °
Axial

] Transverse
Fig. 2.13 Repeating unit cell of the idealized “true” triaxial braid architecture

With the geometric microstructural differences in the two triaxial braid
patterns clearly identified, it is necessary to constrain the microstructure (i.e.,
define the biased tow spacing, axial tow spacing, and maximum producible
volume fraction) as a function of the braid angle, volume fraction, and tow

geometries. In the following section, w, t, s, and A are used to denote the tow
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width, thickness, spacing, and cross sectional area, respectively, while V¢ and Vy,

are the overall fiber volume fraction and the tow volume fraction, respectively.
The braid angle, 0, denotes the angle between the biased tows and the axial tows.
The subscript, a, is used to denote properties of the axial tows, and the subscript,
b, denotes the biased tow properties. Capital variables with no subscript, L, W, D,
and V, are used to denote RUC scale properties of length, width, thickness, and

volume, respectively.

X3
X*
r
Sp L
0/
[ \|v
I‘—’I‘—’F X2
W, Sa
< ?
W

Fig. 2.14 Idealized RUC architecture of the “true” triaxial braid with variable
labels

The geometry of the traditional triaxial braid by introducing a parameter, m,
which represented the ratio of the volume of the axial tows to the volume of the
biased tows. This process allowed the volume of the biased tows to be expressed
analytically without ignoring the undulations in the biased direction. Therefore,
assuming the axial tows and the biased tows have the same tow volume fraction,

Vi, and assuming the tow cross section can be represented as rectangular, the

biased tow spacing for the “traditional” triaxial braid architecture is constrained

via the following equation,
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WataVr,(1+m™h) (2.19)
= - wy

Sp

Vr
Cos0 (t, + 2t)

However, since the tow thickness is small in comparison to the tow width, the
undulations in all tows are ignored for the purpose of calculating the tow volumes
in the true triaxial braid architecture. This simplification allows the microstructure
to be constrained in terms of the braid angle, volume fraction, and tow geometries
without introducing any additional parameters. Furthermore, the tow cross
section is represented via a rectangular approximation, and it is assumed that
analysis of the idealized microstructure provides an accurate representation of the
effective composite scale elastic properties without accounting for any
imperfections within the microstructure. This idealized microstructure is shown in
Fig. 2.14 with all of its variables labeled, and its subsequent GMC discretization

via subcell stacks is shown in Fig. 2.15.

Xs

Fig. 2.15 GMC subcell stack discretization of the idealized “true” triaxial braid

RUC
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For the true triaxial braid, the total RUC volume may be written as

V=LWD (2.20)

where the RUC length, L, and the RUC width, W, are given by

Sp t wp (2.21)
L =—
sin @
Sy +
W =>b Whp (2.22)
cos @

Furthermore, since no more than two tows are stacked together through the
thickness within the braided lamina, the total RUC thickness, D, can be expressed
as follows.

D=t,+t, (2.23)

Therefore, the overall volume fraction may be written as

V(e + V) (2.24)
Ve = St

where V, and V,, are the volumes of the axial and braid tows, respectively, within
the RUC. Using a rectangular cross section for the tows, V, and V,, can be written
directly in terms of the tow dimensions and the braid angle.

Vo = 24,,L (2.25)

Sb+Wb
ind

= 2w,t,
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L 2.26
Vo = 24, cos @ ( )

2 ¢ Sb+Wb
= 2w _—
b™ 5in @ cos 6

Substituting (2.20) — (2.23) and (2.25) — (2.26) into (2.24) yields,

V. = 2Vft(Wata cosO + Wbtb) (227)
T (sp+wp)(te + )

However, the volume fraction is desired to be an input parameter and the
biased tow spacing, Sy, is often a variable difficult to measure experimentally.
Therefore, the biased tow spacing is fully constrained by rearranging (2.27) in
terms of the braid angle, volume fraction, and tow geometries.

2Vft (Wata cos 6 + Wp tb) (228)
Sp = — Wp
Ve(ty + tp)

With the biased tow spacing constrained, the axial tow spacing can be derived
from the overall RUC width. As shown in Eq. 2.22, the RUC width, W, can be
expressed either as shown in Eq.2.29 or as follows,

W =2(wg +54) (2.29)

Therefore, equating Eqg. 2.29 and Eq. 2.22 constrains the axial tow spacing as
follows,

_ Vi (watg cos 0 + wytp) (2.30)
Sa = Vrcos @ (tg + tp) Wa

Furthermore, in addition to constraining the geometry, it is also necessary to

limit the maximum volume fraction to be physically feasible within context of the
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true triaxial braid pattern. Therefore, the dimension x* must satisfy the following
relationship in order to ensure that the axial tows will fit between the bias tows.

x* = 0.55, +w, (2.31)

Meanwhile, the x* term can be expressed as follows,

cos (90° — 0) (2.32)
b Cos (260 — 90°)

Therefore, the lower bound of the biased tow spacing is expressed as follows,

- 2w, cos B + wy, (2.33)
b = 4 cos g L0s(90° —6)
COS Y Cos(20 — 90°)

1

Substituting (2.33) into (2.27) constrains the upper bound of the volume

fraction for the true triaxial braid.

2Vy,(Wqty cos 8 + wytp) (2.34)
v, <
ZWg OCS(gg:_WHb) +wy | (tq + tp)
4 cos @ 1

cos(20 —90°)

If the axial tows and biased tows have identical geometries, (2.34) proves to
be independent of braid angle and simplifies conveniently to the following form,

v
ng (2.35)

Optical micrographs have shown the tow volume fraction to be approximately
60%, therefore the maximum physically feasible volume fraction of the true
triaxial braid is 30%. However, by modifying the arrangement of the biased tows,
such that every other +0 tow lies flat along the bottom of the lamina with no

undulations at all while the remainder of the +0 biased tows remain undulated as
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they are shown, the minimum biased tow spacing is significantly reduced.
Furthermore, by increasing the number of flat biased tows between each
undulated biased tow in the previously described modification of the true triaxial
braid, the biased tow spacing can be reduced to zero allowing significantly higher
volume fractions to be produced. The extension of this microstructural
characterization and the subsequent RUC definition for the three-step
homogenization procedure to account for modifications with an arbitrary number
of flat biased tows between each undulated biased tow is outside the scope of the
present study. Future work will consider these implementations.

Once the microstructural geometry is fully constrained, the idealized
microstructure of the RUC must be discretized into a series of subcell rows and
columns consisting of through-the-thickness subcell stacks, which are
homogenized in the 2" homogenization step prior to the final in-plane
homogenization step. A coarse subcell representation of the true triaxial braid
microstructure consistent with the coarse discretization of the traditional triaxial
braid is employed for this comparison of the two triaxial braid architectures. The
volume fraction of the axial tow subcells is assumed to have a tow volume
fraction of 60%. However, since a portion of the volume of the biased tow

subcells shown in Fig. 2.15 is actually occupied by pure matrix, an equivalent
effective volume fraction (Vf*ﬁ) must be imposed for each of the biased tow

subcells, where the index /£ denotes the subcell column number. Since the

volume of the biased tows in subcell column 1 (B=1) is equal to that of the third

subcell column (B=3) and likewise for the 2" and 4™ subcell columns, the
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effective volume fraction for the biased tow subcells can be derived by only
considering the first two columns of subcells. Due to symmetry between the
subcell rows (denoted by the index v), all biased tow subcells in a given subcell

column have the same effective volume fraction. Therefore, let Vf*ﬁ denote the
equivalent effective volume fraction for the biased tow subcells in subcell column
S . Then the volume fraction can be written as follows,

_ VftWata + Vfl*Watb + ZVfZ*Satb (236)
! (Wq + 54)(tq + tp)

Furthermore, the effective volume fraction of the first subcell column can

easily be expressed in closed form,

2w, 2V (2.37)
vi=vi=——"2 T
! 3 Wa(Wb + Sb)

Therefore, (2.36) is rearranged to yield the effective volume fraction of the
second subcell column.
Vi =V (2.38)

Zsztb Vft

Vi(wg + sg)(tq + tp) — Vawgtg — T

ZSatb

With the geometry fully constrained and the effective volume fraction of the
biased tow subcells defined analytically, the final step of the microstructural
characterization is the definition of the Euler rotation angles used to describe the

undulations of the tows. Therefore, let the Euler rotation angle, ¢, denote the

angle of undulation of the tows along their respective axes. The angle
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representing the tow twist was shown to be insignificant to the degree of machine
precision for elastic property predictions and is, therefore, neglected for this
study.

Therefore, let the undulation angles for the biased tow subcells be denoted as
¢f_fgﬁ'”, where the index « denotes the order of the subcell layers within the
subcell stacks in the through-thickness direction corresponding to the X; material
coordinate direction, such that « =1 corresponds to the bottom surface of the
lamina, and « =2 corresponds to the top surface of the lamina, while the indices
S and y denote the subcell columns and rows, respectively. Furthermore, it is
recognized that the biased tows do not undulate as they cross over the axial tows.

Therefore, the undulation angles for the biased tows in the first and third subcell

columns are set to zero ( So'l'l) = 519’3’2) = ¢£251'2) = ¢>£29'3’1) = O), and the

undulation angles for the biased tows in the second and fourth subcell columns

are defined as follows,

221) _ ,(121) _ ,(242)
+0 =9 — ¥+0 (2:39)
1,4,2
= ¢Gg"
t
= tan~! (2 2 sin 9)
Sa
(1,22) _ ,(222) _ ,(1,41)
1o =@l =y (2.40)

t
= ¢£2é4'1) = —tan~! (2 - sin 9)

Sa
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Likewise, the undulations of all axial tows can be derived from considering

only axial tow subcell (2, 1, 1).

@LD) _ 4 (232) (2.41)
a a

2t),

an I
(112) _ 4 (131) (2.42)
a a
2t
an 7

Therefore, this microstructural characterization of the true triaxial braid
architecture constrains the microstructural geometry of the idealized RUC, derives
the equivalent effective volume fractions for the biased tows subcells that account
for the pure matrix regions within the coarse subcell discretization, and defines
the undulation angles of all subcells within the RUC.

2.4 Fiber Tow Architecture

For all previous mentioned weaves and braids, the architecture of the fiber
tows was not yet discussed and needs to be considered. For the following
analysis, two types of fiber tows are considered: square and hexagonal packed.
Each of these architectures can have various levels of refinement. These analyses
only consider the simplest formulation of discretized subcells for both
architectures. Fig. 2.16 shows a comparison between the two architecture

configurations. These are both double periodic RUC. This RUC is assumed to be
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infinitely long in the thickness direction. These are defined in terms of the tow

volume fraction, Vv, -, and their dimensions are shown below.

Square Packing:

(2.43)
L:{\l fluw 11_ V ftow}
Hexagonal Packing:
H —_ \/\/glfmw l _ \/\/@ftow J@ftcw 1 \/\/élfmw
- 2 2 2 '\ 2 "2 7
(2.44)

w

| | -
Y:]- Y:2 3 | | | |

v=|1 v=|2 v=|3 v=|4 .

Fig. 2.16 Fiber Tow Architectures: Left is square packing, Right is hexagonal

packing
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2.5 Future Work

The research presented previously focused on simplistic and idealized
architectures. Two possible paths of future research can originate from improving
these limitations. Firstly, the assumptions of a rectangular tow and square fiber
are suitable for first order approximations and served well for analysis (see
Chapters 4-6). However, improving the architecture can result in higher fidelity
analysis of local fields and possibly higher fidelity. For example, a fiber tow
bundle is typically elliptical in cross-section shape and a higher order model could
discretized as shown in Fig. 2.17. Improving the undulation assumptions will also
help improve the out of plane predictions. Both of these improvements will cost
computational efficiency and analysis time, therefore an optimal compromise is

necessary.

Fig. 2.17 Possible Elliptical Tow Discretization
Investigation the actual microstructure of a weave or braid reveals that
there is significant variation in the actual microstructure. In addition, laminates
can have ply level nesting in which successive plies are not planar and interact
with each other (see Fig. 2.18). Developing a representative volume element to
model the weave variations as well as the variations in the fiber tow architecture
will improve the stochastic modeling capabilities for modeling woven and braided

composites.
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Fig. 2.18 Triaxial Braided Composites Microstructure From Optical

Microscopy: a) 32x b) 200x
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Chapter 3
3. MULTISCALE GENERALIZED METHOD OF CELLS
3.1 Background and Introduction
Multiscale modeling is in an effective technique used to capture effects of
both geometry and material that spans several length scales. Multiscale modeling
has been particularly useful for understanding the microstructure on the global or
structural level response. In the past, it has been applied to both metals
investigating crystalline microstructures and composites understanding
constituent response and effects. Although nomenclature in the literature varies,
typically a multiscale modeling analysis will follow contain at the very least a
micro and global response. For example, in the case of woven composites, there
are several relevant length scales for continuum mechanics. These scales,
progressing from left to right in Fig. 3.1, are the microscale (constituent level,
fiber, matrix, interface), the mesoscale (tow), the macroscale (repeating woven
unit cell), and the global/structural scale. Traditionally, one traverses (transcends
(moves right) or descends (moves left)) these scales via homogenization and
localization techniques, respectively (Fig. 3.1 and 3.2a); where a homogenization
technique provides the properties or response of a “structure” (higher level) given
the properties or response of the structure’s “constituents” (lower scale).
Conversely, localization techniques provide the response of the constituents given
the response of the structure. Fig. 3.2b illustrates the interaction of
homogenization and localization techniques, in that during a multiscale analysis, a
particular stage in the analysis procedure can function on both levels
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simultaneously. For example, during the process of homogenizing the stages
represented by X and Y to obtain properties for the stage represented by V, X and
Y should be viewed as the constituent level while V is on the structure level.
However, during the process of homogenizing V and W to obtain properties for
U, V is now on the constituent level (as is W). Obviously, the ability to
homogenize and localize accurately requires a sophisticated theory that relates the
geometric and material characteristics of structure and constituent.

The Generalized Method of Cells (GMC) (Paley and Aboudi, Aboudi) is a
micromechanics theory that allows for localization and homogenization between
the micro and global length scales of a repeating unit cell. This theory is well
suited for analyzed such things was a fiber embedded in matrix repeating unit cell
of a laminated composite. GMC can be applied to any material composed of
repeating unit cell architecture. GMC descretizes the materials periodic repeating
unit cell in subcells and applies period boundary conditions at the edges and
displacement/traction boundary conditions at the interface. Through the boundary
conditions, a concentration matrix A, allows the determination of subcell strains
in terms of globally applied strains. The concentration matrix effectively localizes
global strains to local subcell strains. The global stress can then be determined by

homogenizing the subcell stresses.
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Fig. 3.1 lllustration of associated levels scales for woven/braided composite

analysis.

STRUCTURE LEVEL

Fig. 3.2 (a) Homogenization provides the ability to determine structure level
properties from constituent level properties while localization provides the ability
to determine constituent level responses from structure level results. (b) Example

tree diagram.

3.2 Reformulated Triply Periodic Generalized Method of Cells Theory
Typically micromechanics rely on empirical assumptions for the stress strain
relationships between subcells. However, Generalized Method of Cells uses
kinematic formulations to derive the stress strain conditions as opposed to
empirical assumptions. For the generalized multiscale framework, both a doubly

periodic and triply periodic formulation of GMC will be applied, the details of
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these formulations can be found in [Aboudi] and Fig. 3.3 shows the typical
discretized unit cell. A reformulation of the triply periodic Generalized Method of

Cells micromechanics similar to that of [Bednarcyk] is shown here.

a=3 D3 J

a=2 D,

a=1 Dy

Fig. 3.3 Example of GMC Repeating Unit Cell consisting of N, =3, N, =4and

N, =2

The following kinematics are repeated from [Aboudi] as reference and critical
to the understanding of multiscale model. As in the nature of GMC, a first order

expansion of the displacement field about the distances from the center of each

subcell, i.e. Kl(”‘), 72(5)’ and 73(7), IS assumed.

ui(aﬁy) _ Wi(aﬁy) (X)+Y1(a)¢l(aﬁy) n 72(5) (afr) | Yéy) (afr) -123 (3.1)

Here, Wi(“ﬂ” are the displacements at the center of the subcell and the

variables ¢, »“") and ") are microvariables for the first order

expansion about the local coordinates X', x!” and X\"). The variable,
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X =(%,%,,X%; ), is the center location of a subcell with respect to the fixed global

coordinate system. By applying infinitesimal strain theory, the small strain tensor
in a subcell can be related to the displacement field by

(3.2)

Il

gl :l(u(“ﬂ” +u(“ﬂ7)) i,j=12,3
2

Q, a o a 0{ a
where (") = P S = and (") = ”
2 3

Therefore, each strain component can then be computed in terms of the
microvariables. Due to the first order expansion of the displacement field, this

results in constant strains within the subcell, which are referred to as average

strains.
g = gl (3.3)
g = A
g =y ()
Al = 281 = 1) oyl

—(apy) _ -2 gl(aﬁ}' ¢3aﬂ7 +v/l(aﬂ7)

aﬁ’y =4 (ahr) o Z(“ﬂ}/)
> 1

Therefore the average strains in the composite RUC can be written as

_ 1113 —(a (3.4)
& _EHTZZZ‘%} 7y,

a=1 p=1 y=1

Assuming an elasto-plastic temperature dependent constitutive model, the
stress-strain constitutive relationship can be used to determine the average subcell

stresses, i.e.
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O_I(jaw) CI(JZIﬂV) ( gk(la/fy) gkll(aﬁV) ngl(aﬁy)) (3.5)

where &; («/7)js the average stress tensor, C,Jf,ﬂy is the elastic stiffness tensor,

T(apy)

ek,(“’” is the inelastic strains, and &, is the thermal strains. The global average

stress can be defined in the same manner as the strains by

_ 1113 ) (3.6)
Gy = EE;ZZZ i d

a=1 =1 y=1

In order to solve for the microvariables, a set of interfacial boundary
conditions for continuity of traction and displacement must be established. For
each subcell, the neighboring subcell must have an equivalent set of displacement

components at the interface. This leads to the following set of conditions,

(@) _ @) (3.7)
[ a =4 a
X =d, /2 X =—dg /2
u i(aﬂy) } _ ui(aﬁy) . .
%{ =hs/2 ®f ==h; 12
ul@?r) —ul?)
b xgel2 % =112

applied for a=1,...,n_, g =1,... nﬂ,and y=1..,n,. In the GMC framework,

these continuity conditions are applied in an average sense across the boundary

yielding the following conditions.
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1,12 hyl2 1,12 hyl2 (3.8)

u(“”) ax/dx; = [ [ u|  dxfdx]
X" =d, /2 X =—d4/2
[12-hyi2 12 -hy12
L2 d, 02 L2 d,/2 ()
o % o
J' J‘ ui(aﬂV) y d adxg}/ _ J' J. ui“ ¥ A XmadX3y
—12-d, 12 % =hyl2 1 i2-d, 12 %)'=—h;/2
hﬁ/2 d,/2 hﬂlz d, /2
[ue) o dxedxf = [ [ o) dxedR)
xj=l,12 %j==l;12
~hyl2-d, /2 ~hyl2-d, /2

Substitution of the displacement field expansion into the above equation yields a

set of equations in terms of the microvariables.

werr) 1 Qe o) _ fam) _ 9 yam (3.9)
2 2
h af hA ap

Wi(aﬁy)_,__ﬂxi(aﬂﬂ :Wi( ﬁV)__ﬂZi( #)
2 2

Wi(aﬂ;/) +|57Wi(aﬂ7) _ Wi(aﬂ?) _%V/i(aﬂ;?)

In the above equation, all the field variables, w., are evaluated at the center of the

subcell, however it is necessary to evaluate these at a common location, the

interface. In the global coordinate system, the interface is defined as

2 d (3.10)
X1I =[X1( )+?Q’X2’X3}

o1



|
T
2
X! = X, X X(ﬁ)_l_?
3 ks T

To evaluate the field variables (vvi(“ﬁy )) at the interface, a first order Taylor

expansion about the common interface is used. The continuity conditions then

become,

a é 11
) _d_a(_awi " —¢<aﬂ7>J:W<dw>+%(—aWi( " —¢,<%>J (3. 11)

8)(1 1 1 2 axi
P . o 5
Wi(aﬁy) _h_/? awl( " _Zi(aﬁ;/) — Wi(“ﬂV) _}_& 8W|( ") _Zi(”’ﬁ7)
2 ox, 2| 0x,

af; apy
Wi(aﬂV)_|_7 ow ) _y ) | ) +|_7” ow (@)
2\ 0% 2\ 0%

where each field variable and field variable derivative is evaluated at the

interface. Next, let the functions F, G, and H be defined as

|:i(a) — Wi(aﬂy) -+ fi(a) _Wi(dﬂV) o~ fi(d) (3.12)
G =w)| 4 g \Ni( 9l gi(ﬁ)
Hi(y) _ Wi(aﬂy) o+ hi(y) _ Wi(aﬂi) | hi(y")

where,
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(3. 13)

flo) — _ d, [ aWi(DW) ¢(aﬁ7)
! 2 ox |,

g.(ﬂ) = _h—ﬂ[awiaﬁy) — ylapr)
' 21 ox, |, "

F9=0 a=1..,n (3.14)

Ny N n, (3 15)
F =0, Y6 =0 S HY =0

These summations lead to the conclusion that

n, Ny n, (3.16)
=0, Yg¥”=0 >h"=o0.
Under first order theory, in which the second derivative of vvi(“ﬁV Jis zero,
of (@) og'”) oh (3.17)

In addition, differentiation of the continuity equations with respect to x,, x,, and

X, results in
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aW_(aﬂJ’) avv_(dﬂV) (3 18)

X, X,
aWi(aﬁ'J’) ~ aWi(aﬁ”
0X, 0X,
aWi(flﬂ}’) ~ avvi(aﬁ?)
0%, - 0%,

which can be satisfied by assuming that common displacement functions, w; ,
exist such that

W) —w, (3. 19)

and therefore

—W. (3.20)

W(aﬂy)

Using this assumption and Eqg. 3.16 a set of continuum relations can be derived

(3.21)
d ¢a/37

% EY

Ny ., 8VV|

> h ™ =h—"

p=1 2

Ly -1 2%,

7=l axs

The previously defined small strain tensor can be written in terms of the common

displacement functions,

5 :%(Wu hw,,) (3.22)

Substitution of this into the set of continuum relations yields,
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Zd g =dg,, p=l..n,y=L..n

g
Zhﬁ.gzaﬂy he,,, a=1..n,r=L..,n

n

4
ZI g =1z, a=1..,n,8=1..n
y=1

5

(3. 23)

Combining Eq. 3.21a multiplied by h, and summed over g for i=1 to Eqg. 3.21b

multiplied by d_, and summed over « for i =2 yields,
ow, Ow,
d h, (g + 4 )=dh| = =1..,n
Z_;; ( & ) (ax 8x1] 4 4

ZZdahglaﬂy =dhg,, y=1..n,.
a=1 =1

Similar operations yields,

n/,n

ZZhﬂl gzaﬂy hle,, a=1..,n,

p=ly=1
n, n

Zid glsaﬁy =dlgg,, ,le,...,nﬁ

a=1 y=1
These global-local strain relationships can be cast into matrix form as
Ag,=Jde
where

&= (‘911! Epr Eg3y 2853, 2813, 28, )

and
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(3. 25)

(3. 26)

(3.27)
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The interfacial traction continuity conditions, like the displacement
continuity conditions, are also imposed on an average sense. The conditions can

be expressed as,

5l(iaﬁ}’ ) — 51(i&ﬂ7 ) (3.29)
& =al”!
5s(laﬁ7) _ O_S(Iaﬂy)

fori, j,k=123and =1..n_, ,B:L...,nﬁ,and y=1..,n . However, only a

subset of these equations are independent and they can expressed as,

G =5 g=1..n,-1B=1..n,y =10, (3. 30)
G =" a=1..n,f=1..n,~Ly=1..n,

G =60 @ =1..0,f=L.n,y =10 ~1

5o =) a=1..n, B=L..n,~Ly=1..n,

G5 =557 a=1..n,B8=n,y=1..n -1

G =& @ =1..,0,-LB=1.n,y=L.n

e =5 a=n,f=L..n,y=1..n -1

" =63"  a=1..,n,-1B=1..n,y=n

Oy ~=0pn a=n, _LIB:l""’nﬂ_l’y:n}"

By rewriting the subcell stresses in terms of the subcell strains and the

constitutive law, these conditions can be cast into matrix form as

AM(SS—SSI —SST):O. (3.31)

Combining the interfacial displacement and traction conditions yields

As, - [3(5; +55T)= Ke (3.32)
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where

P efi} el o

Solving for the local subcell strains results in the final micromechanical

relationship,

$5=A5+D(€S'+83T) (3.34)
where

A=A'K, D=A"D. (3. 35)

These concentration matrices can be further decomposed into submatrices

resulting in

AL D) (3. 36)

and leading to a relationship between the local subcell strains and globally applied

strains,

@) _ gz plasr) ( g +el ) (3.37)

Lastly, the local stress in a subcell can be computed by

o\ —clehr) (A(aﬁ}’)g + D) (gsl + g;r )_(g(aﬂ7)| 4 glapT )) (3.38)

and the effective composite stress can be computed as

5=C'(z-2") (3. 39)
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where

n, g T (3. 40)
FOP DRI
dhl a=1 p=1 y=1
and
. (3. 41)

- dhl Zzzdahﬂlyc ) ( aﬁy)gsl _El(aﬂy) )

a=1 =1 y=1
The total unknowns using the traditional solution type is 6n_n,n , however

Bednarcyk proposed a reformulated methodology to reduce the number of

unknownsto n,n,+n,n +n,n +n,+n,+n . The author has derived variation

of Bednarcyk’s reformulation more akin to the original style of GMC and useful
for the multiscale framework, it is shown here.

The key fundament concept in the reformulation is that the interfacial traction
conditions results in reduced number of local subcell stress unknowns. These are

expressed in the following equations:
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Gl(iﬂy) _ Ul(lzziy) _ = O.l(lNaﬂ;’) T8 (3.42)

ol i@ = = Ung”) =T
o) =0l = = o™ =T
o =0 == o) =1L
oM =l ==l =T
O_gz;ﬁy) _ o_ggllﬁ) TZ(:/?) :TS(ZW) :T4(a) _ o_ggrﬁy)
o =0l == o) =T
o =oh == o™ =T
Gl(gcﬁy) — Gg?ﬂy) Tl(sﬂy) :Ts(laﬁ) :Ts(ﬂ) — Gl(glﬁy)
o =oli == ol =T
o =0l == o =T
Gl(;zﬁy) — Ugf/ﬂ) Tl(zﬂy) :Tz(lw) :TG(W) — Gl(éxﬁy)

To take advantage of this inherent simplification, the interfacial displacement
continuities are rewritten using the compliance form of the constitutive
relationship. The compliance form of the stress-strain relationship in a given

subcell can be written as,

Eij(aﬁy) = Sijk|5k| +‘5_'ijl(aﬁ7)- (3.43)

Therefore, the modified displacement continuity equations become
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Iy (833jk61k

,_\

a=1 y=!

n n/j

> d.h (8

a=1p

where Sy,

d, (Slljko-glilﬂy)
hﬂ (SZijo-Ekaﬁy)

(apy)

+81'1(“ﬁ”) =de,,
+e?) ) =he,,,

el =1ey,

2 7 hl, (stjkaﬁfﬁy) + gzlgaﬂy)) =hle,,
x|

A1, (Sl + 2™ = die,

(aBr) (aBr)
12k O jk +€12 ) dhe,,,

B=L..,N,y=1
a=1.,N,,y=1
a=1..,N_,pB=1
a=1.,N,
B=1..,N,
7/:1,...,Ny

i, j =1,2,3. Substitution of Eq. 3.42 into the above results in

zd S aﬂ7 aﬁy)

zh S aﬂ7 aﬂy)

Z| S aﬂy aﬂy)

Ng Ny

zzh I S aﬁ7 !Xﬁ}’

p=1y=1

sz | S aﬂ7 aﬁy)

a=1 y=1

>3 d,h, ST

a=1 =1

n(Z
(e
=dey, _Zdagn( ”,
a=1
Ny
(e
=he,, —Zhﬁgzé o),
=

)
_ 1(afy
—|833—Z|76‘33 ,
=1

nﬂn

p=1ly=1

a=1 y=1

) — dhe,, - ZZdah el y=1,..
a=1 =1

“hley - Syl el
=dlg, - ZZd 813“’67,

B=L..n,y=L...n
azl,...,na,yzl,...,ny
a=1,...,na,ﬂ=1,...,nﬂ
a=1..,n,
p=1..n,
,n

where S\ is the compliance matrix in Voigt notation and

T = (T, 1), 10, T, 1, 1)) and summation is implied over
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is the 4" order compliance tensor and summation is implied for

(3. 45)



k =1,2,3,4,5,6. This set of equations contains both the continuity of traction and
displacement eliminating the need for two sets of continuity equations. In matrix
form the reformulated relationship is,

AT, =Jz + Dz (3.46)

where,

(3.47)

It is important to note that the matrices A, D, and J are not equivalent to the
previously derived matrices, but the nomenclature is return because their
symbolic meaning is equivalent. The final relationship between subcell stresses
and global stress is

T, =AJz + ADg, (3. 48)
where,

A=A (3. 49)
The compliance constitutive law at the subcell level can be written in terms of the

independent unknown subcell stress components which is of the form
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gl(laﬂy) S(fﬂy)-r ) 4 S(¢ (@B W +5 (@) (aﬂ) (3.50)
Sl(ztﬂy) + S aﬂ}' + S (aBr) ( ) gll(aﬂ7)

gggﬂy) Sgtllﬂy)-r(ﬂy) +S(aﬂ7)-|-(a7) +S£Zﬂ7)T3(aﬂ) +

S gjﬁy) + S aﬂ7 + S aﬁ7 ) gzéaﬁ;/)

gégﬂ}') _ ngﬂy)T Pr) 4 S (@fr )T 0!7 +Sl (@h7 )T (aﬂ)

S:SZW)T( +! aﬂy)-l-( )+S(aﬁ7)'|'( 7) 53:50437)

gggﬂy) ngﬂy)T Br) +S aﬁ7 w +S4gﬁ7 S(aﬂ)

S(aﬂ}/) + S aﬂ}’ + S (aBr) ( ) gz:gaﬁ}/)

gl(éxﬂy) Sétllﬂy)-r(ﬂy)+S(aﬁ’7)T(a7)+S(aﬁ7 T(aﬂ)+

S(aﬁy) ) 4 st (ahr)T (B) % (BT ) 813(aﬁ7)
gl(;zﬂy) Séfﬂy)Tl Br) + Sﬁtzzﬂy -|- (er) + S (epy Ts(aﬂ) n

STl p Sl 4 s(“ﬂ”ﬂ ") _ g,

or simply written as

g, =BT, —&! (3.51)
The complimentary stiffness constitutive law is
T, =B(e, +e&!) 3.52)
where

B=BL (3.53)
This can be substituted into the local stress/global strain relationship to form

B(s, +!)=AJz + ADg, . (3.54)

Solving for the local subcell strains yields

=BAJE +(BAD-1)z.. (3.55)
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Finally, comparing this to the original formulation of Aboudi (Eq. whatever), a
relationship between the original and reformulated concentration matrices can be

established as

A BA] :|:AM]1{O:|' (3. 56)
As

The local stresses, global stresses, global stiffness, and global inelastic strains can
be computed in the same manner as previous. The result is an equivalent
formulation with significantly reduced computational effort.
3.3 Through Thickness Homogenized Generalized Method of Cells Theory
Inherent to GMC is a lack of shear coupling due to the first order
displacement field assumptions. Tabiei [2004] first established that
homogenization through thickness prior to in plane homogenization results in
improved shear coupling for problems similar to textile composites. To take
advantage of this, the original kinematic framework of GMC has to be altered to
accommodate for these new assumptions. Previously, the interfacial continuity of
displacements was applied on an average sense over a subcell’s face. However,

this now remains true only for interfaces between « to & . For the remaining
interfaces, S to ,B and y to y the continuity of displacements are imposed as an
average over the entire through thickness “stack”, i.e. for ¢ =1—n, . This s

reflected in the new set of displacement continuity conditions
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u(e) — @) (3.57)
: d, /2 ! %=—d, /2
1¢ 1% (a4
—jui( #) dxl——jui( #) dx,
dsy X =hy /2 dsy #f ==, /2
1% @) 1% @)
a-[ui X =, 12 o, d J‘ui % =1, 12 o,
0 ’ 0 7
and in an averaging sense
1,12 hg/2 ) I]/‘z hTz ) (3_ 58)
u " dx/dx] = u? o dxfdx]
1,12 -hy12 X=d. 12 1,12 -hy/2 X==0:12
d 1,12 d,/2
- aﬁy) YA Ay —
I J' X’f:hﬂlzdxl dx;] dx,
-l,/2-d,/2
d | /2 d,/2
il [ J ™ axdkax
172 -d; /2 %/ =-h; 12
hy/2 d, /2
Le T e -
rl U; X{:wdxi dx, dx, =
0 —hy/2-d,/2
1 d h/}/z da/2
il () v A A
dJ. _f _f U; Yé&?wdxl dx; dx,.

0 —hg/2-d,/2

Substitution of displacement field expansion and conversion from integral to

summation in the x, direction results in

+ d_a ¢(aﬂy) — W(aﬂ}’ a ¢ aﬂy (3 59)

2 1 1

_Zd [ (aBr) n h2 (epy) ] z q ( apy) h2 Zi(a[ﬁ)}
- (apy) I (apr) (aBp) _ I 4 (aﬂy)
180, (Wi |3, (W Lyl |

Wi(aﬂ7)

The expansion of the field variable is performed in the same manner as in GMC

which yields
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.aﬁ?/) _d_a 8\Ni(aﬂy) ¢(aﬂ7) —
i 2 8X1 (
A (Br)
i“ﬁ?) 4+ & i _
2\ ox

(3. 60)

The same functions F, G, and H from Equations (find) are used, however the

continuity conditions are now written in the following form due to the through

thickness averaging.
a=1..n

>d,G"=0 B=1..n
a=1

Yd H?=0 y=1..n

a=1

a

B

/4

Summing each function over the appropriate subcell direction yields

nza |:i(a) -0, ZﬁnzadaGi(ﬂ) -0,
a=1

=1 a=1

iidaHf” =0

y=1 a=1

and the following set of conditions can be deduced
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(3. 62)



n, v, (3. 63)

D 69=0, 3>d,g”=0 >>dNn=

a=1 p=1 a=1 71 a-1

After manipulation the following constraints are derived.

> d, g —a (864
~ a’l 6X1
n, g
Zdahﬁli(aﬁy) = dh%
a1 p=1 0X,
n, aW
afy) _ i
d, |y =di—t.
a=1 y=1 3
Applying the defined relationship between the subcell strains to the
microvariables leads to
(3. 65)

Zd g =dg,,  B=l..n,y=1..n

54,05 —dhg,,  y=L..n,

a=1 f=1

ZZd B =dlg,,  B=1..n,

a=1 y=1

which clear shows the through thickness averaging in the 2 and 3 directions. At
this stage, it can be realized that the strains 52(§’ﬂ7 and 533 ") are not entirely

unique. In fact to satisfy the above continuity conditions with a reduced set of
equations due to the through thickness average, two more sets of conditions on the

local subcell strains need to be imposed.

z 2(20rﬂ7) z z(gfﬁy) _ E(zgy) (3. 66)
(o7 ap
z 3(3 ) _ & 3(3 ) _ E(3§7)
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This shows that each stack, i.e. for each through thickness group, the strains in the

2 and 3 direction are equivalent. The normal continuity conditions can be

rewritten,

0, (3. 67)
>d, g =dzg,, p=l..n,r=1..n

a=1

n/] _ _
E hﬂE(2§7)=h522, y=1..,n
=}

SIEY =1z, p=1..n,

7=l

The shear continuity conditions are derived to be

NS (3. 68)
>'>d,h,Es") =dhg,, y=1..n

-
a=1 f=1

n, N

>3 d, ) 257 = dhizy,,

a=1 p=1 y=1

>3y =dlg,,  p=1..n,

a=1 y=1

and a similar conclusion can be regarding the independence of the 23-dir shear

strains. Therefore,

Ez(gﬂi’) — 52(5’/37) —EW) (3.69)

23

and the continuity conditions become
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n, (3.70)
ZZdahgl“W dhg,, y=1..n,.

a=1 f=1

N N,

Zzhﬁlyﬁ(zgﬁy) = hlé—‘zsl
p=1 y=1

iid glaaﬂy =dle,, ﬂzl,...,nﬁ,

a=1 y=1

This yieldsa N,N, +2(N,+N,)+1 x 3N,N N +3N,N, set of equations and

can be cast into matrix form as follows

AE =Jz (3. 71)
where
E = (8111 51 g, 2813, 2513, 28, ) (3.72)
and
g = () gl gletn) | gNaNity) (NN (NN (3.73)

E#) E(ﬁ'}’) E(ﬂV) E(N/fN:/) E(’“/f“y) E(NﬁNy))

22 17733 1723 1ttt 22 1733 1723

Furthermore it can be shown, that the traction boundary conditions are a satisfied
in a through tickness average sense averaging over the 1 direction also. The
modified set of

Gl(laﬂ}/) - O-l(laﬂy) (3 74)

_Zda ZIaﬁy __zda 2laﬁ;/ |¢1
_Zda 3Iaﬂ}/ Zda 3Iaﬁ;/ Iil

G = 5;“”) i 2,3
G\ = g\o) i#2,3



The set of independent traction continuity conditions are listed below.

" =5 a=1..n,-1B=L..,n,7=1..n

a 1 _(ap
_Zda 22137 _H dao-gz 7) ﬁ:]-,...,nﬂ —1,}/:1,...,ny

(e 1 & a)
—Zd 03 o) = — O':§3ﬂ7) ﬂ:ll...,nﬂ,j/zl,...,ny -1

a a=1
13
= (efr) _ =
=]

1 & —(ap) 1 L —(a5)
E;O'sz 4 :E;JSZ 4 ﬁ:np,}’=1,...,n7 1

Q_

5 p=1.,N

a=1

-Ly=1..,n

B 14

—(apy) _ =(apy)

Oy ) =043 a=1..,n,-1p=1.,n,r=1..,n,
e =5 a=n,f=L..n,y=1.,n -1
" =G3"  a=L.,n,-Lp=L..,n,y=n
G =5 a=n,-1p=1..n,-1y=n,

This now gives a second set of equations on the order of

(3. 75)

3N,N,N, +2N,N, —2(N,+N,)-1 x 3N,N,N_+3N N, and can be cast into

matrix form as follows

(3. 76)

Combining the traction and displacement continuity we get a system of equations

where

Az -D(& +&] )=Kz
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Pelilefl

Now we can determine the subcell strains

& =Ne+D'(& +2!) 3.79)

S

where

A =A'K ,D"=A"D. (3.80)
Since & is not meaningful, it is of interest to express the local strains in the form
of the global strains, i.e. & =(Z};, 8, &3, &5, €13, &, ) - T0 accomplish this another
matrix is introduced, a modified identity matrix.

g, =B& ,g! =B&! (3.81)

This purpose of this matrix is to associate the local subcell strains with the

solution strains, for example

A = @8
o4 =)

) =g

o =)

A =

A =

Note, the B matrix contains only 1s and 0s. Substituting this into the subcell strain

results

¢, =BAZ+BDB' (& +¢] ) (3.83)

Simplifying yields
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5S=AE+D(SS'+55T) (3.84)

where
A=BA",D=BDB" (3.85)

Lastly, the concentration matrices A and D can be decomposed into submatrices,

as before, and the final localization equation is.

gl@pr) _ plepz | D(ﬂﬂ?)( e + €ST) (3. 86)

3.4 Reformulated Through Thickness Homogenized Generalized Method of

Cells Theory

The prior formulation solves for the unknown local strain fields, three of
which are independent of « . Further computational efficiency can be achieve
through formulation the unknowns as a mixed set of local strain and stress fields,
all of which are independent of « . This can be accomplished because of the
zeroth order strain fields leads to zeroth order stress fields and as a result of the
traction continuity conditions, all stress components in the 1-dir are independent
of .

This reduces the number of unknowns to 4N,N_ + 3+, which is not a

function of . The « independent local stress fields are listed below
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Ul(fﬂy) — O.l(:fﬂy) Tl(ﬂy) (3.87)
oA =l T
o_gfﬂy) - O.éaﬂy) TS(ﬁ)

Substitution of these into the traction continuity conditions yields
O_:fflﬁ}’)_o_ffﬁ}’) T(ﬁ}’) a:]'""na —1,ﬁ:1,___’nﬂ’7/:1’___’ny (3 88)

_Zda 2§ﬁ}/ Zda 2(2)[/}7 ﬁzl’---,nﬁ _1,]/:1,...,[']}/
—Zda o35 = Zda o B
Z da Zgﬁ}/ -1 Z da Z(C:ﬁy ﬂ

Zda 3?87 __Zda 3Zﬂy ﬂ:nﬂ,]/:l,...,Ny -1
Gl(gﬁy) _Gl(:ﬂ}') TS(ﬁ) a=1..n, —1,18:1,,_,,nﬂ,7:1,.__,ny
ol =al =T a=n,p=1..,n,y=1..,n -1

o =o =T a=1..n,-1B=1..n,y=n

1,...,nﬁ,7/:1,...,n7 -1

L., ~Ly=1..n

4

/4

ngfﬁy) _ Ugfﬂy) :T6(7) a=n,-14=1.., N -Ly=n

However, only the average continuity conditions are independent and thus used in

the solution. The minimum required variables to define a stress/strain state of a

subcell are -|-( ﬂy) E(ﬂy)’Egﬁy)’Ts(ﬂ)’ and Tﬁ(y)1 (

V) =) EP) gV EY) =EY) using previous definitions). This is mixed

set unknowns, i.e. containing both stresses and strains, and requires that the

displacement and traction continuity conditions be written in terms of these
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unknowns. To accomplish this, the constitutive law is rearranged such that the

state at a local subcell is given by

gl(laﬁy) _ Ri(fﬁy)-rl(ﬁ}/) n Ri(;rﬂy)E(zﬂy) " Ri(gtM)EgﬁV) 4 (3.89)

Rl(wﬂy)E(ﬂ7)+R1(aﬁy) (Br) +R1(aﬂ7) 6(ﬁ}')+

Q(aﬂy (efy) Qlaﬁy (apy) Q(aﬂy) sl(aﬂy) +
(a/)’V) & gafﬂ) (aﬂr) & éaﬁﬂf) (aﬁy) &l z(aﬂV)
Gg;z/ﬁ) Rétlzﬂy)-rl(w) +R§Zﬁy)E(2ﬂy) +R§gﬂ7)Egﬂ7) +
R(aﬂy)E(ﬂy) " R(aﬁy)-rs(ﬁy) n Rggﬂy)-r(/ﬁ)
(aﬂy) gll(aw) Q(aﬂy) z'éaﬁy)_ (apr) 83§aﬂ7)

1(aBy) Q(aﬁy) é 3(orlf;/) (aﬂ}') 1(aBy)

(aﬂy)
Epg &

O_ggrﬁy) R:’(,llwy)Tl(ﬁy +R§Zﬂ7) (2ﬂ7) +R§§ﬁ7) gﬁ';/) +

R(aﬁy)Egﬂ7)+R§gﬂ7)T5(ﬂ7) +R§gﬂ7)T6(ﬁ7)+

34
_ (aﬂy)g'(aﬁy)_ (aﬁy)gl(aw)_ (aﬂy)gl(aﬂ7)+

31 11 32 22 33 33
(aﬂy) c 1(afy) _ (aﬂy) 1(afr) _ (wﬁﬂ c 1(efy)
23 3 12

O_gtﬁy) _ Rﬁfﬁy)Tl pr) 4 Rl(gﬂ}')E(zﬂy) n Rggﬂy)E(sﬂy) n
Rﬁi’ﬂ”Eﬂ'g’) +R§gﬁ7)T5(ﬁ7) +R§Zﬂ7)T6(ﬂ7) +
_Q\ar) JMeabr) _ glabr) JMeabr) _ y(abr) JMabr)

4 Cn 42 22 43 633
—Q aﬂy aﬁy (aBy) £ WaByr) _ y(ahr) g 1(afy)
44 45 613 46 ©12

gl(gﬂy) Réfﬁ}/)'rl(ﬂ;/) _,_Régﬂy)E(zﬂV) _,_Régﬁ’}')Egﬁ}') +

R(aﬂ}')E(ﬂy) n R(aﬂV)T(ﬁy) n R(aﬂ}')T (/37)

(a/ﬁ) &l l(aﬁy) (aﬁy) & gaﬁy) (af)’y) e 3(Otﬂy) n

_Qsaﬂy 1(apr) égtﬂy) gléaﬁ}')_ S(gﬂ}') glz(aﬂ}')
gl(;ﬁy) Réfﬁ?)Tl Br) n Retzzﬂy E(zﬂy) n RégM)E(sﬂV) n

R(aﬁ}')E(ﬂy) +R(aﬁ7)T5(ﬂy) +Régﬂ7)T6(ﬁy) n

(aﬂy)gll(aﬁy) Q(aﬁy) ;éaﬂy)_Q(aﬂ}') 3I(aﬂy)+
(0657) & gaﬁy) (aﬁy) & éaﬁy) (af)’y) &l 2(0!/37)
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or more conveniently in matrix form

E(af) _ Rlesr)y () _Q(aﬁV)g'(a/W) (3.90)

where

E(@) _ { gl(izﬂy), Ggﬂy), Gé;rﬂy), O.gtﬂy), gl(ézﬂy), gl(;ﬂy)} (3.91)

U — {Tl(ﬂy) ’ E(Zﬂy) , Egﬂy) , Egﬂy) , Ts(ﬁ) ’ T6(7) }

There is no symmetry to either R or Qin contrast to a typical stiffness or

compliance matrix. The full details on these matrices are given in the appendix.
By applying this new constitutive law the displacement and traction continuities,

respectively, are cast into a matrix form below.
AU, +D,éel =J& (3.92)
AU_+D & =0

and combining both of these yields
AU, +Dg! =Kz (3.93)

where

i bSH

Solving for the unknown local fields U yields

U, = A'Kg - A'D¢! (3.99)

Next, it is useful to convert U to the well known &, . This can be established

through use of the constitutive law and modified identity matrices.
74



& =B.F,+B,U, (3. 96)

where

F =RU,-Q.é! (3.97)

B- and B, are matrices containing only 1s and Os and serve the purpose of
collecting the appropriate terms from each matrix F, and U_. Substitution of the

above yields

6, =(B.RAK+B,AK)z~(B,RA'D+B,Q +BAD)s (3 98)

or

&, = Az +De! (3.99)

where

A=B.RA'K +B,A'K (3.100)
- D=—(B.RA'D+B.Q +B,A'D).

As previously, the A and D can be decomposed into square submatrices
resulting in the final solution

2P — APz o D(aﬁ}’)gsl (3.101)

3.5 Multiscale Generalized Method of Cells Theory

Multiscae Generalized Method of Cells (MSGMC) is a multiscale framework
that takes the existing methodology prescribed by the Generalized Method of
Cells and implements further than the typical macro-micro or global/local

framework. The multiscale framework allows for the analysis of innumerate
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length scales, as physically relevant. An example would be textile composites
where there are three distinct length scales: the weave RUC, the tow RUC, and
the constituents. GMC is only capable of bridging between the weave RUC and
tow RUC or the tow RUC and constituents, not all three. Another example is a
fiber reinforced composite with a particle reinforced matrix. Here the three length
scales would be the composite RUC, the RUC of the reinforced matrix, and the
constituents. The power of MSGMC lies in the ability to fully integrate
micromechanics analysis for RUCs at various length scales.

An important step is to character the RUC geometry at each length scale of

analysis. For a material of interest, the dimensions of every subcell (D,,H ,, and
L) for every multiphase material must be known. This is required to formulate

the global/local relationship. In addition, each constituent must obey an elasto-
plastic constitutive model. Fig. 3.4 shows a typical discretization and link between

two periodic microstructures. Since there can exist multiple length scales, a
nomenclature system has been establish to avoid ambiguity for variables. {aﬂy}
refers to a specific subcell at a single length scale. To correctly refer to a subcell
at a lower length scale, an index needs to precede it. For example, {aﬂy}l{aﬁy}z

refers to a unique subcell where subscript 1 denotes the first localized scale and
subscript 2 denotes the second localized scale. Since at any scale, each subcell can
contain multiple smaller length scales, a subcell at any length scale can only by

identified with the higher length scale indices preceding it (see Table 3.1).
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Table 3.1 Nomenclature and Variables for MSGMC

Global/Local Fields, where | ]denotes field such as +% %0 ©

[ ]denotes global field

[ ]{“ﬁ "' denotes local field (down one length scale)
[ ]{‘"ﬁ” " denotes local field (down two length scales)
[ ]{aﬂy} P4 denotes local field (down n number of length scales)

[ ]{“ﬂ 1) vefers to the local field of subcell as} s at the second length

scale, superscripts dropped due to redundancy

Geometric Properties, where _ denotes a single index for a subcell, i.e.
a, p,ory

N _denotes number of subcells in _ direction

D,H,L denotes dimensions of a subcell in 1,2 and 3 direction

(respectively)

N denotes number of subcells in _ direction in one level down from

{oBr}

subcell {as/}

Ny 110} a5y deNOtes number of subcells in _ direction in n levels

down from subcell
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a=3D3
a=2D, -
v
a=1D;
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&

X3 H1 H2 H3 H4
B=1 B=2 p=3 p=4

Fig. 3.4 Example of MSGMC Repeating Unit Cell consisting of N_ =3,

N,=4and N =2 with subcell{3,4,1}as a multiphase material in an
arbitrary coordinate system

To generalize MSGMC, a three length scale analysis is presented
(macro,meso, and micro). The macroscale is a multiphase composite that can be

described as an RUC of dimensions D,xH ,,xL, . Each subcell within the

macroscale, otherwise known as a mesoscale subcell, can either be a multiphase
material (i.e. composite material) or a single phase material (constituent). If itis a
multiphase material, it has an RUC of dimensions D

xH it
a 14

(amrta X Hiags X Liapy)
is a single phase material, it is represented by a constitutive model. Each subcell
within a mesoscale RUC is a constituent material. The relationship between all

length scales will be described below.
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The macro and mesoscales both contain RUCs and the microscale only contains
constituents. Assuming an elasto-plastic relationship, the governing constitutive

law at the macroscale can be written:
ozC(g—g') (3. 102)
Where o is the stress tensor, C is the stiffness matrix, ¢ is the engineering strain

tensors, and ¢ " is the plastic engineering strain tensor. The stress at the
macroscale can also be determined through volume homogenization of the
stresses at the mesoscale
S i%ﬁ:iaw D, H,L, (3.103)
DHL a=1 =1 y=1
Similarly, the stiffness can be written in terms of the local mesoscale subcell

stiffnesses and concentration matrices.

c 1 N Ngs N, c a,b’y e D H |_ (3 104)
B

a=1 =1 y=1
The plastic strain can written in terms of the plastic strain concentration matrix
and mesoscale parameters.

g DH|1_ NZ:%%: DaH |_ C {apyr} (D{aﬂV}gs' {aBr} _e |{aﬂ7}) (3. 105)

a=1 p=1 y=1
This concludes all necessary governing equations at the macroscale. The total

engineering strain tensor can be localized to any subcell from the globally applied

strain and local plastic strains.
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gl = Nl gy Dl | (3. 106)
However, computation of the terms in Equations 25-27 depends on the mesoscale
subcell properties. The stress (o'*"), plastic strain (&'*""), and stiffness (C'*"
) are computed differently depending if it is a multiphase or single phase subcell.

If {aBy}=single phase

o —clapr) ( gl _ gl{aﬂy}) (3.107)

Constituve Model — C!*, &'t} (3.108)

Elseif {afy}=multiphase

Ny (3. 109)

{apy}{apy}
Y o D Hssle,
DaH ﬂLy {apyta=1{apy}p=1{apy}r=1 (erke” s ey

G{W}

{apr) 1 NWZW:}“ N{“Zﬂ?:’/f Moy (3.110)
C*¥=———
Da H B L7 {aBria=L{apy}p=1{apr}r=1
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In addition, the multiphase subcell must also obey the governing constitutive law
of

ol — cler) ( gl _ gl {aﬂy}) (3.112)

Finally, the parameters at the microscale (constituents of the mesoscale RUC),
can be determined. First, the localized strain is computed through:

glapritaprt _ plepritapr) Jlepr} | plapritepr} , Webr} (3.113)

S

The stress, stiffness and plastic strain at the microscale are determined as follows:

o Pritetrt _ claritepr) ( glapritasr} _ gl{aﬁy}{aﬂy}) (3.114)

Constituve Model — C!“/t1 gHeriesi (3. 115)

Through substitution, the stress for any microscale subcell can be written in terms
of the globally applied strains and local plastic strains at every length scale.
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There are four terms in the previous equations and the meaning of each term is
easily recognized. The first two terms are localization terms from pervious length
scales. The first showing the effect of the globally applied strain and the second
illustrating the effect of plasticity from all the mesoscale subcells. The third term

reflects the effects of plasticity from all the microscale subcells of a given
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mesoscale subcell. The fourth term is the local plasticity of that subcell. This

shows that the stresses at the microscale are fully coupled to the strains at all

length scales and in addition coupled to all the stiffness matrices through the

concentration matrices A and D. Similarly the macroscale stress and stiffness

can be written in terms of local fields.
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ADH L,

(3. 118)
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To solve the numerical solution for the coupled set of multiscale equations

a generalized forward Euler integration formulation for the MSGMC

methodology is presented. MSGMC is broken down into two steps, an

initialization procedure and incremental solution. The initialization procedure is
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described in Fig. 3.5. This procedure involves determining the initial stiffness for
each subcell (every length scale). The effective stiffness at every length scale is
also determined through homogenization. The incremental solution is outlined in
Fig. 3.6. The incremental procedure is a forward Euler scheme that uses the
previous increments stiffness and inelastic strains to move forward. In each
increment, using the previous stiffness and inelastic strains, the concentration
matrices, A and D, are solved for then the local strain increments in each subcell
are determined based on global applied loads. If the stiffness of the subcells
remains unchanged, then the concentration matrices, A and D do not need to be
recalculated, saving significant computation effort. At each length scale after
homogenization, a check for convergence is critical to verify that the forward
Euler step size is sufficiently small. Verification that Equations 13 and 15 and
Equations 8 and 9 yield the same answer to tolerance is useful consideration.
Verifying that the predicted global stress at the beginning of the increment is
equivalent to the global stress at the end of the increment is also useful. Similarly,
if a damage mechanics model is being employed verifying a scalar representative
of the stiffness, such as the determinant, remains unchanged with tolerance at the

beginning and end of the increment is also an indication of convergence.
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3.6 Application to Textile/Braided Composites

To apply MSGMC to modeling of textile and braided composites, the relevant
length scales need to be identified and the material has to be characterized. The
critical length scales can be seen in Fig. 3.1. These are identified as the micro,
meso, and macroscales. At the microscale, the constituents namely the fiber and
matrix are modeled for the constitutive response and failure. At the mesoscale, the
fiber tow bundles, specifically the RUC for the fiber/matrix is modeled. Lastly at
the macroscale, the weave architecture is modeled. A discretized problem for a

plain weave composite is shown in Fig. 3.7.
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Fig. 3.7 MSGMC Applied to Textile Composites
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3.6.1 Miicroscale

The Multiscale Generalized Method of Cells (MSGMC) is used to
represents the woven fabric composite starting with its constituent materials, i.e.
the fiber (monofilament) and matrix progress up the various length scales. The
microscale is the only length scale where explicit constitutive models are applied
to the various phases (e.g. fiber and matrix). Stress states and tangent moduli for
larger length scales are determined through the Generalized Method of Cells
(GMC) triply-periodic homogenization procedure developed by Aboudi®. The
monofilament fibers are modeled using a linear elastic relationship, i.e. Hooke’s
Law, and the matrix material can be represented various constitutive models such
as classical incremental plasticity based on a von Mises yield surface,
viscoplasticity and damage mechanics..
3.6.2 Mesoscale

The mesoscale is used to represent the period structure of a fiber tow. At
the mesoscale, there are two significant architectural parameters: fiber packing
and tow volume fraction. Both of these parameters govern the mesoscale subcell
geometries. The response of the mesoscale is subject to these parameters as well
as the material variation at the microscale. The continuous fiber tows are assumed
to be represented by a doubly-periodic RUC of dimensions h by | consisting of
constituents from the microscale. An example of such an RUC discretized for
GMC is shown in Fig. 2.16, where the inner region (shown in grey) denotes the
fiber tow and the outer region (shown in white) is the matrix. The RUC is
discretized in such a manner that it is composed of Ng x N, rectangular subcells,
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with each subcell having dimensions hg x 1,. From this point forward, superscripts
with lowercase Greek letters denote a specific subcell at the microscale,
superscripts of uppercase Greek letters denote a specific subcell at the macroscale
and superscripts with lowercase Roman letters denotes macroscale variables.
Fiber tow packing and volume fraction typically govern the architecture of the
mesoscale RUC but must be in accordance with the previously described RUC
microstructural parameters. The resulting stress in the fiber tow can be determined
from the GMC homogenization process, where in GMC, the current stress and
current tangent moduli of a particular fiber tow at a point are determined through
a volume averaging integral over the repeating unit cell. This process is
represented by the summation in the following equations, producing the first
homogenization in the multiscale modeling framework. In these equations, o
denotes the Cauchy true stress, A denotes the strain concentration matrix, and C
denotes the stiffness matrix*®. The microscale subcell stresses and tangent moduli
needed to complete the summation are determined through the applied
constitutive models for each constituent based on their current strain state. The
mesoscale strains, which are used as the boundary conditions for the GMC
analysis, are determined from the through thickness (tt) homogenization at the
macroscale. The subscripts tt in the concentration matrix and denote the 2"
portion of the two step homogenization process discussed later.
3.6.3 Macroscale

At the macroscale the RUC for the weave fabric is modeled. At this scale,
the architecture is governed by the overall volume fraction, tow geometry (aspect
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ratio, width and thickness), and overall fabric thickness, wherein the subcell
“constituent” response is obviously dependent on the mesoscale and microscale
responses. The weave requires a triply-periodic RUC representation, of size

DxHxL and discretized into N, x N, x N, parallelepiped subcells, with each
subcell having dimensions D, x H, x L. At this length scale, a two step

homogenization procedure was employed to determine the stiffness and
macroscale stresses. This is to overcome the lack of shear coupling inherent to the
GMC formulation®. The first step involves a through thickness homogenization
and the second step is an in-plane homogenization, where subscripts tt and ip
denote through thickness and in-plane respectively. Details for the subcell
geometry and RUC information can be found in Ref. 5 and 6.
3.7 Future Work

The research presented in this chapter was based off of first order
displacement field assumptions, which result in first order strain and stress fields.
Applying higher order displacement fields will result in a higher fidelity analysis
and improve the accuracy of the model. There is a significant amount of research
necessary to derive the proper relations and bridging between length scales for
higher order theories, particularly in placing the appropriate boundary conditions.
Unfortunately, one disadvantage to higher order techniques is the introduction of
mesh or discretization dependency that is not present with first order techniques.
Secondly, with a higher order formulation allows the use of isoparametric

subvolumes as opposed to parallelpiped subvolumes with appropriate mapping
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(see Fig. 3.7). This will allow an even further refined tow architecture to be

captured.
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Fig. 3.7 Isoparametric Mapping
Lastly, nonlinear geometry effects, such as kinking and straightening of the
fiber tow bundles are important for the accurate modeling of compression and

high deformation.
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Chapter 4
4. Modeling Polymeric Triaxially Braided Composites

4.1. Introduction

Triaxially braided composites (TriBCs) have been of interest for many years
as replacements for metallic materials. A distinct design advantage of TriBCs is
their ability to be tailored from quasi-isotropic to fully anisotropic material
behavior. TriBCs have also shown a greater delamination resistance when
compared to equivalent unidirectional laminates. There are numerous advantages
for TriBCs, but a key disadvantage is the predictive challenge associated with the
mechanical response of this material. This disadvantage initiates for two reasons:
first, the repeating unit cell (RUC) microstructure is complex when considering
application of traditional micromechanical methods, which tend to approximate
composite microstructures; second, the microstructural length scale is often not
insignificant when compared to that of the overall structure and thus the analysis
is often thought of as a structural analysis, more so than a micromechanical
analysis.
4.2. Effective Elastic Properties

A simple application of this multiscale methodology is the prediction of
effective elastic properties at the macroscale. To validate this methodology,
predictive results are compared to experimental and finite-element data for a
T700/E862 material system with 56% fiber volume fraction. Using the multiscale
modeling methodology, the elastic properties for the macroscale RUC are
predicted for a varying volume fraction and braid angle and compared with
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Table 4.1 Constituent Elastic Properties of T700/E862 Material System

Axial Transverse Axial Transverse Shear
Modulus Modulus Poisson’s Poisson’s Modulus
(GPa) (GPa) Ratio Ratio (GPa)
T700 230 15 0.2 0.2 15
E862 2.7 2.7 0.35 0.35 1.0

limited experimental and finite-element results (Littell 2008). For the mesoscale
RUC, the generalized method of cells RUC, which is a 2 x 2 RUC, was applied.
The linear elastic constituent properties used for the analysis are presented in
Table 4.1. The architectural properties can be found in Table 4.2. Results are also
compared to classical lamination theory for reference. The predicted transverse
Young’s, in-plane shear, and axial Young’s moduli of the 56% triaxially braided
T700/E862 composite, as a function of braid angle and fiber volume fraction, are
plotted in Fig. 4.1. The two RUCs bounded the predicted moduli for both axial
and transverse moduli. The simplified RUC resulted in slightly stiffer properties,
whereas the refined RUC presented slightly compliant properties. The coarse and
refined models once again bounded the shear modulus results. Digital image
correlation showed nonuniform state of shear strain in the gauge section. Due to
the inherently large RUC size of the TriBC, there was difficulty in measuring the
macroscale properties. Future tubular test specimens are therefore planned.
Results show good correlation to both the experimental and finite-element results.
In most cases, the simplified RUC and CLT followed similar trends. The CLT
results are in good agreement with the multiscale GMC results for the transverse
modulus for variation of braid angle, but the shear and axial moduli differ greatly.

This is due in part to the limitations of using CLT directly without modification.
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When using CLT, the thicknesses of equivalent laminates must be varied to
enforce that the overall fiber volume fraction in each direction is enforced. For a
60° braid, the volume fractions are equal transversally and axially, so CLT works
well directly. For other brand angles this is not the case and must be accounted

for.

—+-Course RUC
—»— Refined RUC

Transverse Modulus [GPa]

10+ —¥— Equivalent Laminate
—&— Experimental
FEM
0 1 I
45 50 55 60
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a) Transverse Modulus Versus Braid Angle

30+ .
A

Transverse Modulus [GPa]

2 ! ! !
%.4 045 05 0.55
Volume Fraction

b) Transverse Modulus VVolume Fraction
Fig. 4.1 Elastic properties varied with braid angle and fiber volume fraction:
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Fig. 4.1 (contd.) Elastic properties varied with braid angle and fiber volume
fraction:
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Fig. 4.1 (contd.) Elastic properties varied with braid angle and fiber volume
fraction:
Lastly, the local fields for the refined RUC can be determined through
MSGMC. For the case of transverse loads the homogenized through thickness
strains along the loading direction are contour plotted. A reference RUC is plotted

beside the strain contour plot for comparison purposes. The resin rich pocket
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regions (red color in the contour plot) show high strain concentrations and
similarly the resign rich regions between parallel braid tows also show a high
strain concentration then the average field. This capability allows for accurate

prediction of architecture dependent damage from various length scales.
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Fig. 4.2 Local Field Strain Distribution within a Refined RUC for T700/PR520
Triaxial Braided Composite
4.3. Classical Plasticity With Fiber Failure
Although predictions of elasticity constants are useful for the engineering
community, it is more useful to predict the entire stress strain curve. The
governing mechanism for nonlinearity is the polymer matrix. The polymer

material experiences development of inelastic strain at all length scales and as
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such the microscale constitutive model for the polymer should reflect that. To
capture the inelastic response of the polymer, the classical J, incremental
plasticity model with a nonlinear strain hardening law was employed. The
particular formulation for this model however is derived in strain space was taken
from (Bednarcyk 2004) and shown to be equivalent to the well known Radial

Return technique. The yield criterion is given by

K(Ep) (4.1)

where ¢, is the equivalent plastic strain defined by &, = gei’jei; and

& =& —&u 3, K(Ep) is the hardening law which is a function of the equivalent

plastic strain, and G is the shear modulus. The strain hardening law is given by

x(z,) =0, +%(e"*’sp —1) (4.2)

where o is the yield stress and H and A are material parameters. The overall

failure of the composite is governed by the fiber failure and a maximum strain

failure criterion was used to simulate this (Eq. 4.2).
f=g) X, (4.3)
The strain failure of the fiber was assumed to be 2.1% based on manufacturer

specification.
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Table 4.2 Triaxially Braided Composite Parameters

Parameter Value
V, 0.56

Vi, Vi, 0.80

Woo » Wy 3.5mm
0 60 degrees
t 0.14mm
t, 0.07mm

The MSGMC analysis results are validated with experimental data for
tension and shear tests. Table 4.2 lists the architectural parameters and Table 4.3
and 4.4 lists the material parameters used in the analysis. TriBCs are not truly
quasi-isotropic and exhibit some orthotropy, thus it is necessary to investigate
both the axial and transverse response. The predictions of the overall composite
response, shown in Fig. 4.2, show very good correlation in the axial response with
slight under and over predicted failure in the shear and transverse response,
respectively. This result is important as it demonstrates that analyzing multiple

length scales with nonlinearity and failure can provide accurate predictive

Table 4.3 Constituent Elastic Properties of T700/PR520 Material System

Axial Transverse Axial Transverse  Shear
Modulus Modulus Poisson’s  Poisson’s Modulus
(GPa) (GPa) Ratio Ratio (GPa)
T700 230 15 0.2 0.2 15
PR520 3.54 3.54 0.38 0.38 1.28
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responses of complex architectures. Plastic strain versus total strain is shown in
Fig. 4.3. It can be seen that the shear loading produces most plastic strain
followed by transverse and then axial loading. It should also be noted that under

transverse loading, the rate of plastic strain is much higher than the other two

loading conditions.
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Fig. 4.3 Inelastic Triaxially Braided Composite Stress Strain Curve
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Fig. 4.3 (contd.) Inelastic Triaxially Braided Composite Stress Strain Curve
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Fig. 4.4 Plastic Strain Versus Global Strain in Triaxially Braided Composite
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Table 4.4 Plasticity Parameters for PR520 Material

o, (MPa) H (MPa) A

PR520 100 3333 0.1

One of the benefits of MSGMC is that it allows not only for the global
predictive response shown previously, it provides insight to the mechanics behind
the response. For example, under transverse loading, the composite stress of the
RUC is shown in Fig. 4.3, but the local stresses of the tows (in local coordinates)

can be computed and are shown in Fig. 4.5.
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Fig. 4.5 TriBC Mesoscale Stress Distribution under Transverse Loading
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Fig. 4.6 TriBC Fiber Stresses at the Microscale under Transverse Loading
Furthermore, the axial stress in just the fiber can be plotted for each of the tows
against the global strain shown in Fig. 4.6. The matrix stresses at the microscale
were significantly less than those of the fiber. We can see that under transverse
loading, the stresses in the braid tows far exceed that of the overall composite,
however the axial tows do not carry a significant portion of the load.

Another important observation is the normalization of the stress in the tows
with respect to the stress in the composite RUC, shown in Fig. 4.7. This allows an
insight as to the proportion of the load being distributed internally in the
composite RUC. From this plot is where the non linearity clearly becomes
prevalent. In both braided tows, the axial stress begins to carry a higher
percentage of the load with increasing strain. Subsequently, the stress in the axial

tow must drop to maintain equilibrium. This is in an important result as it shows
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that the stress distribution and load carrying response of the tows is not uniform

with applied strain.
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Fig. 4.7 TriBC Mesoscale Stress Ratio under Transverse Loading
The same results can be reproduced for both the axial and shear loadings as
shown in Fig. 4.8 and Fig. 4.9, respectively. In the case of axial loading, it is clear
that the axially aligned tows carry nearly all the load and the stress in the braided
tows are close to zero. Furthermore, the axial fiber within the tows also carries the
majority of this load. The opposite can be seen in the case of shear loading, where

the braided tows carry the load and the axial tow is in a low stress state.
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Fig. 4.8 TriBC Mesoscale Stress Distribution under Axial Loading
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Fig. 4.9 TriBC Mesoscale Stress Distribution under Shear Loading
4.4. Viscoplastic Strain Rate Dependent Response with Constituent Failure
The viscoplasticity model developed by Goldberg, will be employed as it
accurately captures the response of the polymer materials. A small modification to

the model will be employed to enhance the accuracy in capturing the compressive
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Table 4.5 Viscoplasticity Properties of PR520 Resin System

D, (1/s) n Z, Z o
(MPa)  (MPa)
PR520 1x10° 0.93 396.09 753.82 0.0937

response of the material. The evolution of the state variable « , which controls the
hydrostatic effects, was originally assumed to evolve in the same fashion as the
Bodner Partom state variable Z, see Egs 4.4 and 4.5. By using this evolution law
it is difficult to characterize the response for tension and compression as the stress
potential will always be small in compression. By keeping « constant the
response can be accurately captured in compression. The modifications to the

state variable evolution can be seen in the following equations.

a=0q(a,—)é, (4.4)

a=0>a=¢ (4.5)

The MSGMC analysis results are validated with experimental data for a

T700/PR520 material system for tension and shear tests. Table 4.5 shows the key
viscoplasticity parameters used in the analysis, while the architectural parameters
can be found in Table 4.2 and elasticity parameters in Table 4.3. It is critical to
accurately capture the nonlinear rate dependent response of the resin at the
microscale, because its response governs the nonlinear response that the
composite displays. The modified parameters for the PR520 resin system are

shown in Table 4.5. As stated previously, the constitutive model presented by

Goldberg was modified so that the state variable alpha does not evolve and then
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recharactertized to better capture the compressive response of the resin. The
following three figures showed the uniaxial response of the material in tension,
compression, and shear. The experimental results were taken from Goldberg. The
shear response is not dependent on the variable « because it acts only on the
hydrostatic portion of the stress tensor, which is zero under pure shear. However,
the compressive response, which was previously linear with no yielding or
accumulation of plastic strain, now exhibits highly nonlinear behavior that is
comparable to experimental data.

TriBCs are not truly quasi-isotropic and exhibit some orthotropy, thus it is
necessary to investigate both the axial and transverse response. Experimental data
was available for three strain rates for axial and transverse loading. These are
labeled as high, medium and low strain rates. For the axial direction they were
5.2e-4/s, 6.4e-5/s, and 7.7e-6/s. For the transverse direction they were 5.12e-4/s,
8.00e-5/s, and 8.57e-6/s The predictions of the overall composite response, shown
in Fig. 4.10 and Fig. 4.11, show very good correlation with the overlain
experimental data in the axial response with slight under and over predicted
failure in the shear and transverse response, respectively. This result is important
as it demonstrates that analyzing multiple length scales with nonlinearity and
failure can provide accurate predictive responses of complex architectures. The
transverse experimental specimens show high nonlinearity, but this is due to the
use of a straight sided specimen coupon. This coupon causes premature failure at
the first ungripped fiber tow. This causes an artificial nonlinearity that is due to
coupon structure not the material behavior, however a new specimen design has
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been implemented but results are unavailable. Since the design and

implementation of a test specimen that accurately captures a pure uniaxial

transverse load is difficult and has not been fully implemented, the results from

the multiscale model are assumed to better represent the true transverse response.
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Fig. 4.10 TriBC Axial Tensile Constitutive Response Plotted Against

Experimental Data
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Fig. 4.11 TriBC Transverse Tensile Constitutive Response Plotted Against
Experimental Data

Since the experimental data was limited to relatively low strain rates, several
higher strain rate cases were carried out in order to study the rate effects. The
strain rates seen in the experimental data are considered relatively slow, and at
those rates, little rate dependence is seen in the resin itself. In Figs. 4.12-4.14 the
strain rate dependent behavior is shown for various levels of strain rates listed in
the legends. The results are presented for axial, transverse, and shear loading.
Although the experimental results show little strain rate dependence, the predicted
results for higher strain rates, those close to levels seen in high speed ballistic
impact testing, do exhibit rate dependence. Even at the highest rates simulated,

the results are still slightly nonlinear. Another important facet that has not yet
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been explored is the rate dependent failure mechanisms of the polymer. Although
overall failure is clearly governed by the failure of the fiber, the response in the
nonloading directions can be greatly affected by the failure response of the
polymer itself. Future work will be focused on implementing advanced and rate
dependent failure criteria for polymers.
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Fig. 4.12 TriBC Aixal Tensile Constitutive Predicted Response
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4.5. Future Work

Many important phenomenon for modeling triaxially braided composites were
reported here including elasticity, plasticity, viscoplasticity, and failure. However,
there are still significant mechanisms that have not been included. For example,
tow delamination and fiber/matrix delamination are critical under high speed
impact loadings. Additionally, modeling the failure modes and damage
mechanisms of the polymer can help improve the accuracy of shear and

compression loadings.
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Chapter 5
5. Modeling Polymeric Woven Composites
5.1. Introduction
Woven composites are currently widely used due to their reduce delamination
tendencies relative to their thickness. These materials are preferable for their
direct replacement for the commonly used cross ply lamina/laminates. Even
though woven composites are mainstream, commonplace analysis is limited due
to the complex in-plane shear response, which is a function of both the material
and geometric nonlinearity. It was previously shown that the triaxial braided
composites did not exhibit severe rate dependence, however due to the high
nonlinearity the strain rate dependent effects are significant in shear loading.
Lastly, woven composites are readily available in a plethora of configurations
controlling architectural parameters, many of which are not accounted for in
traditional analysis, and the effect of changing these parameters is a critical
interest in aerospace applications.
5.2. Elastic Properties
To validate MSGMC for woven polymer composites, first the elastic
predictions must be valid and accurate. For the test case here is a comparison
drawn between an explicitly modeled finite element technique (Kollegal 2000)
and experimental results (Blackketter 1995). Here the shear modulus and
Young’s modulus are compared for the case of a AS-4/3501-6 60% volume
fraction plain weave composite. The material properties are summarized in Table
5.2. The geometric parameters for the test case are summarized in Table 5.1. The
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comparison between the two techniques and experimental data, shown in Fig. 5.1

and Fig. 5.2, shows a minute difference between them.

Table 5.2 Constituent Elastic Properties of AS-4/3501-6 Material System

Axial Transverse Axial Transverse  Shear
Modulus Modulus  Poisson’s Poisson’s Modulus
(GPa) (GPa) Ratio Ratio (GPa)

AS-4 221.0 13.8 0.2 0.25 13.8
3501-6 4.4 4.4 0.34 0.34 1.62
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Fig. 5.1 Predict and Experiment Modulus for 60% AS-4/3501-6 Plain Weave

Composite

Table 5.1 AS-4/3501-6 Plain Weave Composite Geometric Parameters

Parameter Value
V, 0.60
o 0.70
w Imm

t 0.5mm
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Fig. 5.2 Predict and Experiment Modulus for 60% AS-4/3501-6 Plain Weave
Composite

A unique application of MSGMC, due to its high computational efficiency, is
the ability to quickly vary architectural parameters and surmise their effect on
modulus (coordinate system in Fig. 5.3). The quintessential modulus versus
volume fraction plot for laminated is more complicated for woven composites to
the coupled geometry between volume fraction and tow architecture (see Eq.
2.22). To vary the volume fraction, a relationship has to be constrained between
the architectural parameters and therefore two methods result: constant thickness
or constant width. In application, when volume fraction is changed neither the

constant thickness nor constant width is enforced, but some

113



2
Fig. 5.3 Prescribed Coordinate System for Woven Composites

combination of both width and thickness change. For simplicity, the constant
thickness or constant width assumptions are made for various volume fractions.
Both plain weave and 5 harness satin weaves were simulated for volume fractions
varying between 5-60%. The material parameters for this analysis are shown in
Table 5.3. A tow width of 1.69 mm was used while the tow volume fraction and
thickness were changed accordingly. The variation for the in-plane parameters
show nonlinear trends as expected and the differences between weaves are more
pronounced at higher volume fractions. This is due to the fact at lower volume
fractions, the material response is more matrix dominated and less architecture

dependent. An important observation is that the constant width and constant

Table 5.3 Constituent Elastic Properties of Graphite/Epoxy Material System

Axial Transverse Axial Transverse  Shear
Modulus  Modulus Poisson’s Poisson’s Modulus

(GPa) (GPa) Ratio Ratio (GPa)
Graphite  230.0 15.0 0.2 0.2 15.0
Epoxy 3.1 3.1 0.38 0.38 1.12
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thickness trends exhibit different convexity for the in-plane modulus variations,

while the Poisson’s ratio and shear modulus are similar.
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Fig. 5.4 Volume Fraction Variation for Constant Thickness RUC a) In-Plane
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5.3. Modeling Plain Weave Composites with Ramberg Osgood Deformation
Plasticity
Since it has already been established that MSGMC is highly capable of
predicting the components of the elastic stiffness matrix, the next step is to predict

the entire stress strain curve including failure. In order to capture the nonlinear
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response of the matrix material and to generate a fair comparison with other
approaches, a Ramberg-Osgood type deformation plasticity model is employed.
This type of model is identical the work of (Tabiei 2004), which is the most
similar micromechanical approach to MSGMC. However, the particular
implemented presented in the works of Tabiei is slightly unstable and its approach
is more akin to a scalar damage model. Also the model is inherently unstable and
requires a small time step to converge. To improve stability, the model is changed
to a deformation plasticity type model with the assumption of all nonlinear being
related to plastic strain. This assumption does not change the end result of the
constitutive model, but allows for a simpler implementation. In Tabiei’s variation
of the Ramberg-Osgood model, it assumes that the shear nonlinear can be
modeled by the following relationship

G,y (5.1)
{lJ{wjp}
S

where 7 is the shear stress, yis the shear strain, G, is the initial shear modulus, S

7(y)=

is the maximum shear strength, and p is a material constant governing the amount
of curvature in the stress strain curve. A modification into a deformation plasticity
can relate the plastic shear strain to the total shear strain by the following
relationship

up (5. 2)

oty

and the shear stress can now be calculated by
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T=G(7/—7/p). (5. 3)
The resulting formulation allows the elastic stiffness matrix to remain unchanged
and allow for more stable convergence.

To validate the model, the overall stress strain curves for tension and shear are
plotted against several other techniques and experimental data. The material
system can be described by Table 5.2 and Table 5.1 along with the nonlinear
properties of the matrix (p=2.34 and S =89MPa). The fiber failure strength
was taken to be 2.4 GPa and the failure criteria of Eq. 4.3 was used. The overall

result curves are shown in Fig. 5.6 below.
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Fig. 5.6 AS-4/3501 60% Volume Fraction Plain Weave Composite a) Tensile
Stress-Strain Curve b) Shear Stress-Strain Curve
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The global stress-strain curves are compared to experimental results
(Blackketter 1995), finite element analysis (Kollegal 2000), micromechanics
(Tabiei 2004), and analytical methods (Naik 1995). From the graphs, it is seen
that MSGMC performs well when compared to the other methods and techniques.
5.4.Viscoplastic Strain Rate Dependent Response with Failure

Although plasticity models are useful in solving static problems, modeling the
strain rate dependent response is a critical issue in dynamic problems. Orthogonal
weaves show a strong rate dependent response in shear loading where the
nonlinear matrix response is governing. To capture the rate-dependent response of
the material parameters and governing equations in Section 4.4 were used. To
demonstrate the rate dependent effects, three different strain rate cases were
evaluated: 1e-5/s, 1/s and 1e3/s. These were chosen to reflect realistic loading
conditions. Only shear loading was considered because other loadings did not

exhibit strong rate dependent effects.
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Fig. 5.7 Strain Rate Dependent Shear Response of AS-4/3501-6 60% Volume
Fraction Plain weave Composite
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Fig. 5.7 shows the predicted curves and it is clear that this is a critical
phenomena. However, a rate dependent failure criteria for the polymer matrix is
necessary to fully capture the response. This will allow the strength levels to be
accurately predicted. Future research will hopefully quantify this constituent
response and improve current modeling capabilities. MSGMC has the capability
to compute the local field distributions at several length scales. For the case of

shear loading, Fig. 5.8 shows the local shear stress (o,,) distribution in the plain
weave at the initial stage and at 8% shear strain, while Fig. 5.9 shows the local

plastic shear strain (&) distribution.

\® \ /ﬁﬁ >

a) 0
Fig. 5.8 Local Shear Stress Distribution in AS-4/3501-6 60% Volume Fraction
Plain Weave Composite at 1e-5/s Strain Rate a) .02% Strain b) 4% Strain

L\ |

Chhnr Ctrace /MDA

121



100

@ Q0
_ P = \

L \®@
=
N :
b) 0

Fig. 5.8 (contd.) Local Shear Stress Distribution in AS-4/3501-6 60% Volume
Fraction Plain Weave Composite at 1e-5/s Strain Rate a) .02% Strain b) 4% Strain
The local stress distributions show the inherent nonlinearity in the polymer
response. Load redistribution can be seen by the color changing between the two
contour plots. The matrix pockets changed from a yellow to a yellow-green color,

indicating loss in load carrying capability due to plasticity.
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Examining these figures allows one to understand the local load carrying
paths and the materials responsible for the nonlinear behavior. The undulating
tows and the interweave matrix carry the majority of the shear load in the
composite and thus are responsible for the overall behavior. A five harness satin
variant of this weave was also simulated. The local fields for this weave exhibit
similarities to that of the plain weave. The distribution is fairly consistent between

the weave types.
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Fig. 5.10 AS-4/3501 60% Volume Fraction 5 Harness Satin Weave Composite a)
Tensile Stress-Strain Curve b) Shear Stress-Strain Curve
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5.5. Parametric Variation

The previous sections of this report focused on modeling the macroscale
response of a weave RUC. The macroscale result is dependent on several
architectural and material parameters and can exhibit significant variation
depending on the statistical distributions of these parameters. In a real structure,
the RUC cannot be idealized to a perfect geometry due to manufacturing
variations. An RVE of several RUCs is necessary to capture the response due to
material variation, therefore another length scale is added, the structural scale.
The structural length scale refers to the component being analyzed, i.e., an engine
fan casing or in this case a region within the gage length of a typical experimental
test coupon — unaffected by edge effects and thus idealized by a representative
volume element (RVE) consisting of several macroscale woven repeating unit
cells formed from various combinations of architectural effects. The macroscale

weave refers to the RUC of the weave, for a plain and 5-harness satin fabric. The
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mesoscale represents the RUC of the fiber tow, this represents a bundle of fibers
(typically 3k, 6k or 12k for polymeric matrix composites). The smallest length
scale is the microscale, which represents the fundamental constituent materials,
such as the monofilament fiber and matrix itself.

Two scenarios were investigated at the structural scale: 1) an RUC comprised
of 3x3 macroscale RUCs and 2) an RUC comprised of 6x6 macroscale RUCs.
This was performed in order to investigate the influence of discretization (size)
effect between the macro and structural length scales, since at the structural scale,
see Fig. 5.13, macroscale RUC representing each subcell is randomly chosen.
There are several “microstructural” parameters at the meso, macro, and structural
level required to fully define the descritzed subcell geometries. At the mesoscale,
both tow volume fraction and tow packing are required, while at the macroscale,
weave architecture, weave volume fraction, tow aspect ratio and ply nesting are
required. At the structural level, the spacial distribution of the macroscale RUCs
are required, i.e., uniform — each subcell is associated with the same macroscale
RUC or random — subcells are associated with a uniform distribution of
macroscale RUCs. It has been of recent interest to study the effects of these
parameters and understand what the driving factors for both elastic and inelastic

response are.
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Table 5.4 Constituent Elastic Properties of AS-4/3501-6 Material System for
Plasticity

EA ET Vv v G/_\ Oy A H

(GPa) (GPa) A T (GPa) (MPa) (GPa)

AS-4 2250 150 02 02 150 N/A NA N/A
3501-6 4.2 42 034 034 156 71 100 15

To effectively study the effects of the architectural parameters, the response of the
woven composite was studied at two length scales: macro and structural. For this
analysis an AS-4/3501-6 material system with an overall fiber volume fraction of
60% was used. The properties of the constituent system are shown below in Table

5.3. There are three plasticity parameters o, , a, and H. o, is the yield strength of

the material; a, is the exponential hardening coefficient, and H is the post yield
modulus (see section 4.2). To study the effects of architectural and material
variation on the macroscale response, a full factorial set of numerical simulations
were conducted. The parameters varied are shown in Table 5.5 and are depicted in
Fig. 5.13. The three architectural parameters varied for tow volume fraction, tow
aspect ratio, and fiber packing. All other parameters in the analysis were kept
constant. The tow volume fraction and fiber packing are both considered a

mesoscale effect because their geometrical properties are involved in the

Table 5.5 Parameters Varied For Parametric Analysis

Microstructural

P Relevant Length Scale Values
arameter
Tow Volume Fraction
Vv Meso 0.62,0.65,0.70
(Vi)
Tow Packing Meso Hexagonal, Square
Tow Aspect Ratio (AR) Macro 9,18,36
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mesoscale concentration matrix (Eq. 2). The tow aspect ratio is considered a
macroscale property because it is taken into account in the macroscale
concentration matrices. The tow volume was varied over the range of 0.62, 0.65,
or 0.70. These three values were chosen based of common experimental values
for polymer matrix composites. Tow aspect ratio was chosen to be 9, 18 and 36. A
value of 9 is typical of ceramic matrix composites, 18 is typical of polymer matrix
composites, and 36 was chosen as an upper bound. Two different fiber packings
were used, square and hexagonal, as both exhibit different response. Although

most polymer matrix composites exhibit random packing, square and hexagonal

Tow AR Effects on Tensile for Hex packing and V;=0.65 Tow AR Effects on Shear for Hex packing and V,=0.65
1000 1207
800 100
—- ~ 80
& 600 £
=3 =3
« » 60r
123 123
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w (7] 40+
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—AR=18 —AR=18
—AR=9 ——AR=9
00 0.005 0.01 0.015 0.02 00 0.02 0.04 0.06 0.08 0.1
Strain Strain

Fig. 5.14 Typical Macroscale Deformation Response, given a tow volume fraction
of 65%, hexagonal fiber packing within a given tow, and varying the tow aspect
ratio from 9 to 36

are both approximations of this.

The full factorial simulations were run for both the tension and shear response
and was also performed for two macroscale weave RUCs; a plain and 5HS weave.
The range for the parameters were chosen such that they represent the typical
variation in a polymer matrix composite, future work will allow for the

investigation of stochastic variables and other composite systems such as metallic

and ceramic matrix composites where the properties mismatch is significantly less
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than for PMCs. There were two types of fiber packing considered within the tows;
square and hexagonal. The tow aspect ratio is defined as the width per thickness,
as shown in Fig. 5.13. The full factorial simulations for both responses and weave
types resulted in a total of 72 cases analyzed. In each of these cases, the overall
volume fraction and material system was kept constant so that results are
comparable. In each case, two structural features were investigated, the elastic
modulus and strain energy (area under the stress-strain curve) -which enables

inelasticity effects to be considered.
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Fig. 5.15 Macroscale Tensile (bottom row) and Shear (top row), for Plain (left
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row) and 5HS (right row) Response for All Architectural Variations.

The results of the macroscale analyses are presented in Table 5.6. The overall

response for each case is plotted in the Appendix, with typical stress vs. strain

response plots shown in Fig. 5.14 and all responses overlaid for both weave types

shown in Fig. 5.15. It is apparent that there is a significant amount of variation at

the macroscale. From the graphs in the Appendix some conclusions can be readily

drawn. Increasing the tow aspect ratio will increase both modulus and strain

energy. Decreasing tow volume fraction has the same effect as increasing tow
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Fig. 5.17 Structural Scale Tensile Response (for 6x6 RUC).

aspect ratio, increase in modulus and strain energy. The hexagonal RUC at the
mesoscale was more compliant and exhibited more plasticity than the square RUC
for equivalent volume fractions. The tensile response was also more sensitive to
changes than the shear response, as expected. The results show up to three times
the standard deviation in tensile response when compared to shear. It is clear that
there are coupling effects also present, so it was necessary investigate this further
with an analysis of variance (ANOVA) was performed using Design Expert’
software product. The p-value results are presented in Table 5.7. A p-value
represents the probability that the effect determined from the ANOVA occurred
due to noise. Typically a p-value of less than 0.10 indicates a significant effect,
assume a 95% confidence interval. The ANOVA results show that typically these
architectural effects do not influence significantly the response because of vary
large p-values (much greater than 0.10). The most notable effect was seen in the
interaction of the fiber packing and tow volume fraction. This was present in the

plain weave tensile response cases. Clearly, the results at the macroscale indicate
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that several of the meso-structural architectural effects are significant and must be
considered if the macroscale is the final length scale in the analysis.

Similarly, the influence of microscale parameters were examined by holding
fixed the architectural effects (square packing with a 70% tow fiber volume
fraction and an aspect ratio of 18) and varying the elastic properties of the matrix
and fiber by £10%. Then inelastic properties were kept constant. Here, results for
both the tensile and shear response are shown in Fig. 5.18, wherein very little
variation at the macroscale is observed, which is in contrast to the previous
significant influence of architectural effects. This will most likely not be the case
for both ceramic matrix composites or metal matrix composites, as the mismatch
between constituent materials is significantly less (by approximately a factor of

ten) then in the case of a PMC material systems
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Table 5.6 Macroscale Results of Parameter Study for AS-4/3501-6 Plain Weave

Plain Weave 5HS Weave
Long Shear Long Shear
Longitudinal Shear  Strain Strain  |Longitudinal Shear  Strain Strain
Aspect  Tow Volume | Modulus Modulus Energy Energy | Modulus Modulus Energy  Energy
Packing  Ratio Fraction (GPa) (Gpa) (MPa) (MPa) (GPa) (Gpa) (MPa) (MPa)
Hexagonal 18 0.65 55.32 4.64 9.19 7.86 42.78 4.41 7.63 7.44
Square 36 0.7 46.13 4.20 8.09 7.32 52.83 4.36 9.63 7.60
Hexagonal 36 0.65 51.65 4.30 8.98 7.51 57.86 4.12 10.73 7.32
Square 9 0.65 61.43 4.37 10.99 7.66 58.40 4.25 11.13 7.54
Square 18 0.65 66.03 4.33 12.50 7.69 58.49 4.14 10.70 7.35
Hexagonal 9 0.7 66.46 4.34 12.56 7.71 59.11 4.27 11.18 7.58
Hexagonal 18 0.7 67.35 4.21 12.45 7.49 60.95 4.18 11.18 7.42
Square 9 0.62 67.91 4.35 12.87 7.74 61.68 4.32 11.62 7.67
Hexagonal 9 0.65 62.28 4.36 10.93 7.65 62.54 4.43 11.57 7.75
Hexagonal 9 0.62 58.48 4.32 9.96 7.57 63.16 4.42 11.62 7.74
Square 36 0.65 41.15 4.50 6.86 7.58 64.17 4.70 11.41 7.99
Hexagonal 36 0.62 56.66 4.53 10.22 7.70 65.26 4.59 12.19 7.81
Hexagonal 36 0.7 65.53 4.18 12.10 7.44 65.92 4.19 12.14 7.46
Square 36 0.62 66.10 4.71 11.86 8.01 67.11 4.60 12.55 7.83
Square 9 0.7 59.30 4.38 10.80 7.66 67.85 4.39 12.43 7.71
Hexagonal 18 0.62 47.04 4.25 8.63 7.40 68.55 4.45 12.98 7.81
Square 18 0.7 54.33 4.65 9.27 7.88 70.21 4.73 13.10 8.04
Square 18 0.62 56.07 4.55 10.15 7.72 70.78 4.61 13.60 7.86
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Table 5.7 Macroscale P-Value Results for Design of Experiment Study on AS-4/3501-6 Plain Weave Composite System

P-value
Plain SHS
Longitudinal Shear Longitudinal Shear
Longitudinal  Strain Shear  Strain |Longitudinal  Strain Shear  Strain
Modulus Energy  Modulus Energy| Modulus Energy  Modulus Energy
A-Fiber Packing 0.55 0.76 0.301 0.204 0.41 0.34 0.36 0.28
B-Tow Aspect Ratio 0.08 0.16 0.743 0.624 1.00 0.97 0.82 0.99
C-Tow Volume Fraction 0.45 0.41 0.515 0.494 0.18 0.09 0.49 0.35
AB 0.29 0.34 0.832 0.721 0.42 0.27 0.56 0.51
AC 0.03 0.05 0.570  0.299 0.78 0.75 0.61 0.60
BC 0.11 0.27 0.465 0.163 0.40 0.24 0.81 0.66
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Table 5.8 Structural Scale Results of Parameter Study for AS-4/3501-6 Plain Weave

Plain (3x3) Plain (6x6) 5HS (3x3)
Shear
Longitudinal| Longitudinal Shear Strain |Longitudina] Longitudinal Shear |Longitudina| Longitudinal | Shear [Shear Strain
Modulus | Strain Energy | Modulus | Energy | | Modulus | Strain Energy | Modulus | | Modulus | Strain Energy | Modulus | Energy
(GPa) (MPa) (GPa) (MPa) (GPa) (MPa) (GPa) (GPa) (MPa) (GPa) (MPa)
RUN 1 54.65 5.72 4.33 3.45 54.49 5.64 4.36 64.29 6.74 4.32 3.54
RUN 2 53.99 5.56 4.33 3.45 54.10 5.60 4.35 64.24 6.76 4.46 3.53
RUN 3 55.02 5.73 4.36 3.45 54.91 5.69 4.37 64.91 6.89 4.33 3.54
RUN 4 54.17 5.57 4.41 3.47 54.72 5.69 4.32 63.45 6.60 4.43 3.53
RUN 5 53.92 5.56 4.40 3.47 54.19 5.60 4.39 63.43 6.67 4.45 3.51
RUN 6 52.79 5.35 4.35 3.45 55.16 5.74 4.38 62.99 6.56 441 3.52
RUN 7 54.26 5.64 4.38 3.46 54.11 5.60 4.36 64.27 6.75 4.39 3.53
RUN 8 52.73 5.34 4.41 3.47 53.94 5.58 4.36 64.00 6.71 4.39 3.52
RUN 9 54.08 5.54 441 3.48 53.23 5.47 4.35 64.22 6.73 4.40 3.52
RUN 10 54.05 5.63 4.46 3.49 54.12 5.57 4.42 63.72 6.65 4.33 3.54
RUN 11 54.35 5.64 4.36 3.46 54.47 5.61 4.38 63.96 6.71 4.42 3.52
RUN 12 54.30 5.58 4.33 3.44 55.34 5.77 4.35 64.02 6.74 4.39 3.53
RUN 13 55.22 5.74 4.45 3.48 53.92 5.55 4.39 63.43 6.58 4.38 3.52
Average 54.12 5.59 4.38 3.46 54.36 5.62 4.37 63.92 6.70 4.39 3.53
Std. Dev 0.72 0.13 0.04 0.02 0.57 0.08 0.02 0.51 0.09 0.04 0.01
% Dev 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00
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Table 5.9 Average Results for Structural Scale Parameter Study for AS-4/3501-6 Plain Weave

Plain (3x3) 5HS (3x3)
Longitudinal Shear Longitudinal Shear
Longitudinal  Strain Shear  Strain Longitudinal  Strain Shear Strain
Modulus Energy  Modulus Energy Modulus Energy  Modulus Energy
(GPa) (MPa) (GPa) (MPa) (GPa) (MPa) (GPa) (MPa)
Average Macro 58.29 5.23 440 3.82 62.09 5.76 440 3.83
Structural 54.12 5.59 438 3.46 63.92 6.70 439 3.53
Percent Standard Deviation Macro 0.14 0.17 0.04 0.02 0.11 0.12 0.04 0.03
Structural 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.00
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Table 5.10 Statistic Macroscale Results of Parameter Study for Plain Weave

Shear Shear Strain
Long. Modulus ~ Modulus Long Strain Energy
(GPa) (Gpa) Energy (MPa) (MPa)
Avg. 58.29 4.40 10.47 7.64
Std. Dev 7.99 0.16 1.73 0.17
% Dev 0.14 0.04 0.17 0.02

At the structural scale, the effects of multiple macroscale RUCs are studied.
For both the tension and shear response, plain and 5hs weaves were investigated
for 3x3 and 6x6 structural RUC cases. The two different size RUCs at the
structural scale were used to investigate the sizing effects from the macro to
structural scale. Each of the RUCs composing the 3x3 or 6x6 RUC at the
structural scale is comprised of a macroscale RUC with a set of randomly
determined architectural parameters. For example, one RUC would have a 62%
tow volume fraction with an aspect ratio of 18 and square packing and another
could be completely different. Each architectural parameter was randomly
selected for each RUC. Thirteen cases were run for each structural RUC in order
to achieve a broad spectrum of combinations. The results of all 13 runs are shown

in Fig. 5.16 for the 3x3 and Fig. 5.17 for the 6x6. Table 5.8 shows the results of

Table 5.11 Statistic Macroscale Results of Parameter Study for 5SHS Weave

Shear Shear Strain
Long. Modulus ~ Modulus Long Strain Energy
(GPa) (Gpa) Energy (MPa) (MPa)
Avg. 62.09 4.40 11.52 7.66
Std. Dev 6.80 0.19 1.37 0.21
% Dev 0.11 0.04 0.12 0.03
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the structural cases. It is important to note that the variance is greatly reduced
when compared to that of the macroscale plots. A comparison of the averages and
standard deviations are shown in Table 5.9 and illustrates that the variation at the
structural scale as compared to the macroscale is significantly reduced. For
example, the maximum standard deviation at the macroscale showed up to a 15%
while that at the structural scale was a mere 2%. Consequently, it appears that the
effects of lower scale variation are diminished after one or two higher length
scales of homogenization. Future work will investigate stochastic modeling of

parameters as well as architectural nesting effects.
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Fig. 5.18 Material Variation Results on Plain Weave Composite subjected to

Shear and Tensile Loading Respectively.

5.6. Future Work

In this report it was demonstrated that MSGMC is high capable of capturing
even the highly nonlinear shear response with techniques such as plasticity and
viscoplasticity. This research focused on the tensile and shear response, however

modeling the compressive response is a critical issue as woven composites are

139



commonly used in a variety of applications. Nonlinear geometric effects are a
critical mechanism that partially governs the compression of woven composites.
Additionally, predictive capabilities for the load/unload and fatigue response of
woven composites are still rudimentary and use of MSGMC to predict these as a

valuable application of the multiscale micromechanics.
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Chapter 6

6. Modeling Ceramic Woven Composites

6.1. Introduction

For this particular study, a five harness satin weave is considered. In this
idealization of the architecture, the repeating unit cell is assumed to be
representative of the entire structure. A multiscale framework depicting the
critical length scales and features for this study is shown in Fig. 6.2. A picture of
the fabric with the repeating unit cell outlined in red is shown in Fig. 2.5; in this
study nesting/ply shifting will be ignored. To create a RUC suitable for analysis,
the weave is discretized into several sub-volume cells. There are two types of
materials comprising all the subcells: fiber tows and interweave matrix. This final
3D discretization is shown in Fig. 6.1, along with example lower scale RUC
representing the multiscale analyses of the interweave voids, tows and intra-tow
voids. In the figure, fiber tows are indicated through the lined subcells. The lines
indicate the direction of orientation. The blank subcells represent the interweave
matrix. This results in a 10x10x4 sized RUC of dimensions shown in Eg. (15). In
this equation w is the tow width and delta, the tow spacing, can be determined

W

(W+9)

enforced by back calculating the tow spacing. Due to the chemical vapor infusion

from V, = V,_ . The proper overall fiber volume fraction and tow width is

process used to manufacture the woven fabric composites, there exists high levels

of porosity, as shown in Fig. 6.2, that cannot be neglected.
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Satin Subcell Configuration

Fig. 6.1 Discretized 5-Harness
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Fig. 6.2 Multiscale methodology with architectural effects being varied shown at
three length scales considered. Actual micrographs are complements of P.
Bonacuse, NASA GRC, 2010.

6.2.Void Modeling

Voids are accounted for in the RUC in one of three ways: 1) void content
is neglected; 2) voids are assumed to be evenly distributed through the weave; or
3) voids are localized to critical areas determined from optical inspection
(microscopy). Fig. 6.3 illustrates the three types of void modeling at the
macroscale. The first figure shows no voids accounted for anywhere, the second
figure depicts voids evenly distributed in the weave matrix (yellow, e.g., 12.7%
void fraction), and the third figure shows high density (e.g., 85%) void regions in
red and low density (e.g., 5%) void regions in blue. Note in both void idealization
the total interweave void volume fraction is held constant at 12.7%. The voids are

accounted for at a smaller length scale by analyzing a separate RUC
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homogenizing those properties. This is done for two primary reasons. First,
explicit modeling of voids in GMC will tend to “eliminate” an entire row and
column due to the constant strain field assumptions within a subcell. Yet, by
performing a separate analysis, this effect is dampened since void volume and
shape merely change the resulting anisotropic “constituent” response. Secondly,
this allows for a faster, more accurate representation of void shape and

distribution then explicitly modeling voids at this length scale.

D={t/4t/4,t/4t/4} (6.1)
H ={5,w,6,w,6,w,5,w,5,w}

L ={5,w,5,w,5,w,5,w,5,w}

S99 999 S
goagaagagaa9a99g
A9
gogaaagaaa9a9g
Soaadaa99A4T
goaaaa9a9a999g
SJoaadada9a99 S
goaaaaaa9ag99g
goaaagada9a9a9 S
gaoaaa9g99 995

Fig. 6.3 Three Types of Void Distributions; white no voids, yellow and blue
represent 5% voids, and red represents 85% void content
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Fig. 6.3 (contd.) Three Types of Void Distributions; white no voids, yellow and
blue represent 5% voids, and red represents 85% void content

6.3. Tow Repeating Unit Cell With Interface

The fiber tow bundles are modeled using a doubly periodic (continuously
reinforced) 4x4 repeating unit cell consisting of three materials: fiber, fiber
coating/interface, and matrix. Consequently the effective tow properties are
influenced at each load step by all three constituents. In Fig. 6.4 , the black
denotes the fiber, the hatched area represents the interface, and white represents
the matrix. At this level there are also voids due to the CVI process. However, the
voids at this level appear to be more evenly distributed than at the weave level

and thus are represented by evenly distributing the void content in the tow areas
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(see tow in Fig. 6.4). This is accomplished once again by calling a separate void
analysis for each matrix subcell in the RUC, just as described in the weave RUC
section. Consequently, the effective tow properties are being influence at each
increment by all three constituents, matrix damage and intra-tow void volume
fraction. For each fiber tow bundle, the orientation is carefully computed such
that the undulation is properly accounted for and the failure criteria can be applied

in the local coordinate system.

Fig. 6.4 Fiber Tow Bundle with Interface RUC

Voids are modeled through computation of a triply periodic
(discontinuously reinforced) 2x2x2 RUC as shown in Fig. 6.5. The hatched
subcell represents the void portion while the white represents the matrix. The
relative size of the void cell is what determines the overall void content in both
the fiber tow bundles and the weave. As mentioned previously, modeling of voids
as a separate GMC analysis has many advantages. The overall RUC of the weave
will remain constant regardless of the shape and distribution of the voids, i.e. no
rediscretization is required. Consequently, the void location, quantity, and
geometry can be quickly changed. Lastly, the strength and stiffness degradations
and stress concentrations can be captured through GMC without reducing the
accuracy of the analysis at the macroscale.
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Fig. 6.5 3D Void RUC

6.4.Constitutive and Failure Modeling

6.4.1. Matrix Damage Modeling

The matrix material, assumed to be the same in both the weave and tow, is
modeled through a scalar damage mechanics constitutive model driven by the
magnitude of triaxiality, i.e. the first invariant of the stress/strain tensor. This
constitutive model represents the cracks and brittle failure often seen in these
CMCs. A scalar damage variable, ¢, which varies between zero (no damage) and
one (complete failure/damage), scales the elastic portion of the stiffness tensor

and is employed directly in the stress strain relationship.
o=(1-¢)Ce (6.2)
To determine the magnitude of damage, a damage rule is defined as:
f =3¢,nK-0,, =0 (6.3)

In this potential, n represents the damaged normalized secant modulus and K

represents the instantaneous tangent bulk modulus, see Fig. 6.6. This potential
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uses a stress and strain measure as defined by the first invariant of the respective

tensors. This is shown in the following equations.

O +0, + 0'33)
3

(511 + &y + 533)

3

-

oy =(o

(6.4)

e, =1,(¢)=

The damage rule in (6. 2) is only active once a critical stress criteria has been
reach, i.e., it is only valid when oy > oyam. Equation (16) can be rewritten in
incremental form with i+1 denoting the next increment

(8i+1 — (C,j + A8i+l).
f =n3K'Ag,"" —Ac,'" =0 (6. 5)

This can be converted to a strain based function by substituting the following

relationship in for the stress increment:
Acy, ™ =3(K™Ag, ™ +(K ™ =K')5,™) (6. 6)
Resulting in:
nKOAgH”l—(K”lAgH”l+(K”l— K‘)gH”l)=0 (6. 7)

where K° represents the initial bulk modulus, see Fig. 6.6. The instantaneous

tangent bulk modulus can be related back to the damage scalar through

K i+ :(1_¢i+1)K0 (6. 8)
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Substitution of (6. 8) into (6. 7) and simplification yields a formulation for the
damage scalar:

i+1 i i+1
KO nAg, "+ g,

_ i+1: i+1:
1 ¢ A (AgHi+l+gHi+l)

(6. 9)

where the initial value, ¢°, is zero.

crif

E
H
Fig. 6.6 Schematic showing bulk moduli change as function of triaxial strain.

6.4.2. Fiber Failure Modeling

The fiber is assumed to behave linearly elastic up to failure, with failure
following the Hashin type failure criterion put forth in 1980, see Ref. 9. This
criterion determines the catastrophic failure of the fiber based on the axial and
shear strengths. When the failure criterion exceeds 1, the fiber stiffness matrix is
degraded to a minimal value. A key assumption made in this analysis is that the
compliant fiber interface will fail simultaneously with the fiber and does not
present its own failure modes. The failure stress levels presented later are an in-

situ failure stress considering the interface.
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Table 6.1 iBN-Sylramic Fiber Properties

Name iBN-Sylramic
Modulus 400 GPa
Poisson's Ratio 0.2
Axial Strength 2.2 GPa
Shear Strength 900 MPa
0'112 1 2 2
f :ﬁ+r 2(0'13+012) (6 10)

axial

6.5.Results

For this study, a five harness satin weave with a CVI-SiC matrix and iBN-
Sylramic fiber (silicon carbide fiber coated with boron nitride) were chosen, due
to the availability of experimental data for correlation. An approximate overall
fiber volume fraction of 36% (which was held fixed for all cases examined) was
determined along with a tow width of 10mm and total thickness of 2.5mm (i.e.,
eight plies), see actual micrograph inserts in Fig. 6.2 (compliments of P.
Bonacuse, NASA GRC). The properties and necessary material parameters are

listed in Tables 6.1 through 6.5, wherein the elastic properties were determined

Table 6.2 CVI-SiC Matrix Properties

Name CVI-SiC
Modulus 420 GPa
Poisson's Ratio 0.2
Odam 180 MPa
n 0.04
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Table 6.3 Boron Nitride Fiber Interface Properties

Name Boron Nitride
Modulus 22 GPa
Poisson's Ratio 0.22

from either published values or discussions with colleagues while the strength and
damage parameters were obtain from correlation with the macrolevel tensile
response curve, shown in Fig. 6.7.

A typical response curve of an experimental, on-axis, tensile test is shown
in Fig. 6.7, taken from Morscher (see Ref. 7 and 8), and is overlaid with a
baseline correlation using the localized void model (see Fig. 6.3c). The simulated
response shows good correlation with the experimental curve, approximately
capturing the deviation from proportionality (often referred to as “first matrix
cracking”) and failure stress. In Fig. 6.8, the underlying mechanisms causing
nonlinearity (which are subtle in some places), are denoted; the four primary
events being: intra-tow matrix damage, inter-weave matrix damage (in the low
stress and also in the high stress region) and fiber failure. The multiple damage

initiation points are due to two reasons. First, different regions of the weave RUC

Table 6.4 5HS iBN-Sylramic/CVI-SIC Weave Architecture Properties

Type 5HS
Fiber Volume Fraction 36%
Tow Volume Fraction 78%

Tow Width 10mm
Tow Spacing 2.78mm

Thickness 2.5mm
Matrix CVI-SiC
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will initiate damage at different times. Secondly, different tow subcells within a
given region initiate local damage at different time’s thus providing variable
effective tow properties. It is useful also to look at the instantaneous secant elastic
modulus, which degrades due to matrix damage as shown in Fig. 6.9. It is easier
to understand the degradation effects due to the matrix by directly looking at the
stiffness effects. In a typical tensile response curve, there are four significant
events that are useful for characterizing the material; these are: 1) initial modulus
2) point of nonlinearity (first matrix cracking) 3) post first matrix cracking (i.e.,
damaged) modulus and 4) fiber failure point. The subsequent parametric study
will focus on the impact that material and architectural parameters have on these

four significant measures.
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Fig. 6.7 Typical Experimental Response Curve’®

152



Table 6.5 5HS iBN-Sylramic/CVI-SIC Tow Architecture Properties

Tow Fiber Volume Fraction 46%
Tow Packing Structure Square
Fiber IBN-Sylramic
Matrix CVI-SiC
Interface BN

Furthermore, it is critical to understand the underlying mechanisms
governing these events. In the case of the initial modulus, it is clear that the
individual constituents’ stiffness matrices and the weave architecture are primary
drivers, along with possible microcracking of the matrix constituent. The fact that
some damage occurs before the first major point of nonlinearity, is substantiated
by the experimental acoustic emission results in Ref. 7. Similarly, the model
attributes this initial cracking to damage in the intra-tow matrix and to damage in
the high void density region of the inter-weave matrix (known as the high stressed
region). The second event (i.e., the first major point of nonlinearity) occurs at
approximately 0.075% strain, for the CMC examined, is said to be “first matrix
cracking”. This point is taken to reflect a significant crack (or coalescence of
microcracking) occurring in either the tow or weave matrix; thus enabling
environmental attack of the composite. Correlating model results to that of the
typical response (see Fig. 6.7), the model predicts that cracking occurs in both the
tow and weave, at “first matrix cracking”. Thirdly, the slope of the post first
matrix cracking curve (damage modulus) is determined by the response of the
tows in the loading direction, matrix material (i.e., the behavior after damage

initiation) and corresponding constitutive model and weave architecture. Again,

153



the experimental acoustic emission results (of Ref. 7) are consistent with this in
that they show some damage gradually occurring after first matrix cracking within
this region of the response curve. This is most likely a combination of all previous
damage growing as well as the onset of new damage in the high stressed regions.
This damage progression continues with continuous local stress redistribution
from matrix to tow/fiber until the final failure point is determined by reaching the
failure strength of the fibers within the tow. Note, although not considered here,
MSGMC can incorporate statistical fiber breakage by modeling multiple fibers
within the Tow RUC. Further although both the axial and shear fiber failure
strength values given in Table 6.1 were backed out from the composite level
tensile curve, these parameters should be experimentally determined from either
individual monofilament and/or tow testing. To the authors knowledge such tests
have not be conducted to date, but will be critical tests that should be done in the

future.
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Fig. 6.8 Typical Simulated Response Curve
300 4
High Stress Region Interweave
/\S%’/ Matrix Damage Initiation
250 - Low Stress Region
\ ‘/ Interweave Matrix Damage
200
150 4
100 - Intertow Matrix
Damage Initiation
50 4
0 T T T T T T T T T 1
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0045 0.0050

Strain

Fig. 6.9 Typical Simulated Secant Modulus
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6.5.1. Effects of Material Properties

To understand the influence of constituent material variation on the overall
macro response; three of the matrix material constitutive model parameters (i.e.,
the initial modulus, post first matrix cracking modulus, n, and critical cracking
stress, ogam) Were varied. Note, these properties were varied a significant amount
from the baseline so that their effect could be clearly seen. For example, the
initial modulus was increased by 50%, in another case n was increased by 200%
and in a third case ogam Was increased by 100%. Considering the results in Fig.
6.7, one would expect that changing the matrix modulus should correspond to
changing the initial weave modulus and post first matrix cracking modulus. This
is in agreement with the results shown in Fig. 6.10. In addition to the weave
stiffness changing, the onset of “first matrix cracking” is also affected; resulting
in a higher stress level (approximately 10%) and lower strain to failure
(approximately 10%). Next changing only the parameter n from that of the
baseline, one would expect the post first matrix cracking modulus to be primarily
impacted, as verified in Fig. 6.10, with a corresponding change in failure stress
(e.g., increased 10%), failure strain (e.g., decreased 12%), and post secondary
modulus (e.g., increased 120%). Finally, increasing ogam caused the “first matrix
cracking” onset to be delayed (approximately 110 MPa, or 94%) resulting in
higher overall failure stresses (increase of 8%) and a lower failure strain level of
0.0031 (a 24% reduction). Note that the initial weave modulus and post first

matrix cracking modulus are nearly unchanged, in this case.
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Fig. 6.10 Variation of Matrix Constituent Material Properties

6.5.1. Effects of Architecture

To study the effects of architectural variation on the macroscale response, a
full factorial set of numerical simulations were conducted. The parameters varied
are shown in Table 6.6 and depicted in Fig. 6.2. The three tow architectural
parameters varied were: a) tow fiber volume fraction, b) tow aspect ratio, and c)
tow void volume fraction. In addition, three weave void location cases were
examined to illustrate the influence of void location due to manufacturing as well.
Note in the present study void shape is not examined due to lack of knowledge of
3D variation. All other parameters in the analysis were kept constant.
Additionally, other architectural effects exist that the authors did not investigate

which could possibly have an effect. These include inter-ply nesting, fiber
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Table 6.6 Varied Parameters and Ranges for 5HS iBN-Sylramic/CVI-SiC
Study

Architectural Parameter ~ Relevant Length Scale Values

Tow Fiber Volume

Fraction (Vy) Meso 0.46,0.48,0.50
Tow Void Volume Meso 0.01,0.05,0.07
Fraction

Tow Aspect Ratio (AR) Macro 8,10,12
Weave Void Distribution Macro None, Even, Localized

packing structure, coating thickness, and fiber tow shifting to name a few. Future
work will determine which of these parameters are the most significant. The tow
fiber volume fraction and void volume fraction are both considered a mesoscale
effect because their geometrical properties are involved in the mesoscale
concentration matrix (Eq. (2)); whereas, the tow aspect ratio is considered a
macroscale property because it is taken into account in the macroscale
concentration matrices (Egs. (5) and (11)). The tow volume was varied over a
narrow range indicative of typical experimental variation: 0.46, 0.48, and 0.50.
These three values were chosen based on common experimental values obtained
for CMCs. Similarly, realistic tow aspect ratios were also chosen, i.e., 8, 10 and
12, where a value of 10 is typical for CMCs and three different fiber void volume
fractions were used; 0.01, 0.05, and 0.07.

In Fig. 6.11 the effects of weave void distribution are examined; wherein
three line plots (each corresponding to an assumed void distribution discussed
earlier). Two cases, that is no void modeling and uniformly distributed voids, fail
to capture the correct overall response. As the initial modulus is too stiff, “first

matrix cracking” stress and failure stress levels are too high and the strain to
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failure too large. This is a result of incorrect local failure modes and local stress
distribution. Therefore one can concluded that to accurately capture the overall in-
plane deformation and failure response the analysis must incorporate accurate
localized void distributions. In addition it has been observed!®% that the out-of-
plane moduli is significantly reduced as compared to that calculated when void
shape is not accurately accounted for; only recently, has a sheet like network of
voids been microscopically observed, Bonocuse et.al.***2 . Consquently, the
influence of void shape is illustrated in Fig. 6.12, wherein a cubic, cylindrical and
sheet like void shape is examined given the case of localized voids. The out-of-
plane moduli is significantly influenced by the assumed void shape, in that E, =
165, 172.5, and 88.8 GPa, when one considers cubic, cylindrical and flat (or sheet
like) voids, respectively. However, the in-plane response (both deformation and

failure) is unaffected by void shape as shown in Fig. 6.12, as one might expect.

800 +
700 -
600 -

500 -

MPa)

%, 400 -

Stres!

——No Voids
100 -=Evenly Distributed
Localized \Voids

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
Strain

Fig. 6.11 Effects of Weave Void Distribution
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Fig. 6.12 Effect of void shape on tensile response, given localized void
distribution.

The remaining parametric cases were all computed using the localized
void model. However, it is important to note that the tow fiber volume fraction
and weave void volume fraction are coupled and cannot be decoupled within the
analysis, since when the fiber volume fraction within the tow increases, the tow
spacing must increase in order to maintain continuity of the overall fiber volume
fraction and thickness. This therefore creates a large volume domain for voids to
fill, thus increasing the overall void content. Correspondingly, the effect of
increasing void content and tow volume fraction are coupled together. The total
variation in stress — strain response for all cases are shown in Fig. 6.13. Clearly,
the overall response characteristic is very similar, irrespective of the value of the
individual parameters, with the variation in the initial modulus being at most 22%,

first matrix cracking approximately 16% and the ultimate tensile stress for all
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practical purposes being identical. Furthermore, the post first matrix cracking
modulus changes some 24% (i.e., from 72 GPa to 90 GPa) with a corresponding
16% change in final failure strain. The configuration providing the stiffest
response is composed of a tow volume fraction of 46%, aspect ratio (AR) equal to
12 and tow void fraction of 1%, whereas the most compliant response is generated
using a tow volume fraction of 50%, aspect ratio (AR) equal to 8 and tow void
fraction of 7%.

In Fig. 6.14 through Fig. 6.16 the various responses are arranged so as to
enable identification of parameter sensitivities. Fig. 6.14 shows the effect of tow
void content on the overall response; where it can be seen that increasing the void
content within the tow (thus lowering its effective stiffness) causes the macro
response curve to be more compliant with generally an effect of increasing the
strain to failure. Fig. 6.15 shows the effect of tow aspect ratio; where increasing
the aspect ratio has the effect of stiffening the response curve and lowering the
failure stress. Fig. 6.16 displays the influence of tow fiber volume fraction, which
appears to be minimal at first glance. Although this trend is possible, as
mentioned previously, it is strongly coupled with the overall weave void volume
fraction and thus these two effects could be working in opposition to one another.
Consequently, it is impossible to deduce from these graphs, the overall effect of
tow fiber volume fraction.

Comparing all parameters, the weave void locations, tow void content,
fiber volume fraction within a tow and tow aspect ratio, one can assess the
severity of these effects. For example, it is clear from Fig. 6.11, that the location
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(and shape) of voids at the macroscale is a critical driving parameter relative to
failure. This far outweighs all other parameters. Similarly, the effect of inter-ply
tow nesting could also be a critical/primary driving factor, yet this effect has been
left for future work. Besides the weave void content (i.e., location and shape), the
tow void content has the strongest effect on post first matrix cracking stiffness
and the tow aspect ratio has the strongest effect on failure strain. The tow fiber
volume fraction appears to have a minimal effect.
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Increasing Aspect Ratio
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Fig. 6.14 Effects of Tow Void Content
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Increasing Tow Void Content
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6.6. Future Work

Fig. 6.16 Effects of Tow Volume Fraction

Here the mechanical response of the ceramic matrix woven composites was

predicted with a high accuracy. CMCs however are typically multifunctional

materials that are used in thermo-mechanical loading as a heat barrier and load

bearing structure. Modeling the thermal stresses, creep and high temperature
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effects of CMCs is the next progressive step. In addition, implementation of
MSGMC with an oxidation model to predict the degradation due to chemical

effects will be useful as CMCs are a highly multifunctional material.
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Chapter 7

7. Conclusion
7.1. Conclusion

This research in this dissertation can be summarized into two portions:

multiscale modeling and analysis of complex composites. A novel
micromechanics based multiscale modeling technique is reported that
continuously bridges between all length scales and solves all governing equations
simultaneously. This technique, known as MSGMC, is fully generalized for any
multiple length scale periodic structure and fully capable with integrated with an
elasto-plastic or damage mechanics based constitutive model. A specific
formulation of MSGMC implementing a through thickness homogenization is
formulated to allow for modeling of thin RUCs, such as woven and textile
composites. Furthermore a reformulation to improve the computational efficiency
is also provided. MSGMC was then used to analyze polymer matrix and ceramic
matrix composites for triaxial and woven configurations. Results showed

excellent correlation with experimental data and other theoretical methods.
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APPENDIX A

TERMS OF MIXED STIFFNESS COMPLIANCE MATRIX
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A= C44C223 - 2C23C24cs4 + C33C224 + C:22(:324 - C22C33C44
1
R11 = Z (_C122C324 + C33C44C122 - 2C44C12Cm(:23 + 2C12C13C24cs4 +
2C12C14C23C34 - 2C33C12C14C24 - C123C224 + C22C44C123 +
2C13C14C23C24 - 2C22C13C14C34 + C11C33C324 - C11C22C33C44)

C24 (C13C34 - C14C33 ) + C23 (C14C34 - C13044 ) - C12C324 + C12C33C44
A

R12:_

Cs4 (C12C24 - C14C22 ) + Czs (C14cz4 - C12C44 ) - C130224 + C13(:22044

R13:_ A

C34 (C12C23 - C13C22 ) + C24 (C13C23 - Clzca3 ) - C14C223 + C14022C33

R14:_ A

1
Ris = K (C15C22C324 - C12C25C324 - C13C224C35 + C15C224C33 B

C14C223C45 + C15C223C44 +C3CChCyy +CuCpsClCys +
C14023(:25634 - C14 C24 C25C33 - 2015 C23C24 C34 +

C12 C24C34C35 + C13C23024 C45 - C13C23C25 C44 -

C14(:22 C34C35 + C12 C23034 C45 - C12 C23C:35C44 -

C12 C24C33C45 + C12 C25C33C44 - C13C22 C34 C45 +
C13C,CysCyy +C,Cy,C5Chs —CisC,C55C)

1
R16 - K (C16C22C324 - C12C26C324 - C13C224C36 + C:160224(:33 -

C:14C:223C:46 + C16C223C44 + C13C24C26C34 + C14C23C24C36 +

R21 =

C14CCpCyy —C1yCyyC6Cyy —2CsC5C,, Cyy +C,,C,, Gy G +
C13C23C24C46 - C13C23C26C44 - C14(:22 C34C36 + C:12 C23C34 C46 -
C1oCCsCh —C1pCCiyCh +CpCp6CysCyy — C3C,,C Cg +
C13C5C6Cos +C1uCyCs5Ch —C1sC1,CisChy)

C24 (C13C34 B C14C33 ) + Czs (014C34 B C13C44 ) B C12 C324 + C12(-\'33C44

A
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- C33C44 — C324

Ry, = A

R.—=— CuCa —CyCus
23 A

R, =— C23C34 B CZ4C33
24

A

C24 (C34C35 - C:33C45 ) + Czs (C34C45 - Casc44 ) - CZSC; + C25C33044
A

R25 =

C24 (C34C36 - C33C46 ) + C23 (C34C46 - C36C44 ) - C26 C324 + C26C33C44

Rze = A

Ry =—Ry;
Ry, =Ry

c,,C, —C:

R33 __ =2 42 34

R —— CpsCo —CCy
34 A

R — C34 (C24C25 - C22C45) + C23 (Cz4c4s - C25044 ) B C35C224 + C22C35C44
35 — A

R — C34 (C24cze - C22C46 ) + C23 (C24C46 - C26C44 ) - C36C224 + C22C36C44
36 A

R41 = _R14

R42 R24
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C34 (Czsczs - C22035 ) + Cz4 (C23C35 B C25C33) - C45C223 + C22(-:33645

R45 = A

C34 (C23C26 - C22C36 ) + C24 (C23C36 - Cze C33 ) - C4e C223 + sz C33C46
A

R46 =

Ry =Rs
Rs, =Ry
Re; =R

1
Rss = X (_C223st + C44C550223 - 2C55C23Cz4cs4 + 2C23C24C35045 +
2C23025C34C45 - 2C44C23025C35 - C224C325 +
C33C55C224 + 2C24C25C34C35 - 2C22C13C14C34 +
szC44Cfs - sz C33C44C55)

1
R56 - Z (C22C56C3‘24 - C224C35C36 - C25C26C324 + (:224(:33056 -

C223C45C46 + C223C44C56 +C5,CCqyCs +C5,Cps Gy Cys +
C3CiCasChs +CysC0CysCls +Cp3CsC3yCrp —CsCysCiCyy +
C23C26C34C45 - C23C26C35C44 - C24C25C33C46 - C24C26C33C45 +
C25C26C33C44 - C22C34C35C46 - C22C34C36C45 + C22C35C36C44 -
2C5,CCqyCys +CC35C5C6 — C22C33C44C56)
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1
Res = Z (_szacfe + C44C66C223 - 2C66C23C24C34 + 2C23C24C36C46 +

2C23C26C34C46 - 2C44C23C26036 - C224C3‘26 + C33066C224 +
2C24Czecs4C36 - 2C22013C14C34 + C22C44Cfe - C22C33C44C66)

Rll 0 O 0 RlS R16
Ry -1 0 0 Ry Ry
o_|Re 0 -1 0 Ry Ry
Re 0 0 -1 Ry Ry
R.. 0 0 0 Ry Ry
Ry 0 0 0 Ry Ry
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APPENDIX B

PLAIN WEAVE PARAMETRIC STUDY GRAPHS
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Figure 1 Fiber Packing Effects on Shear Response for a 5SHS Weave.
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Figure 2 Fiber Packing Effects on Shear Response for a Plain

Weave.
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Figure 3 Fiber Packing Effects on Tensile Response for a Plain

Weave.
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Figure 4 Fiber Packing Effects on Tensile Response for a 5HS
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Figure 5 Tow Aspect Ratio Effects on Shear Response for a Plain

Weave.
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Figure 6 Tow Aspect Ratio Effects on Shear Response for a 5HS

Weave.
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Figure 7 Tow Aspect Ratio Effects on Tensile Response for a Plain

Weave.
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Figure 8 Tow Aspect Ratio Effects on Tensile Response for a 5SHS

Weave.
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Figure 9 Tow Volume Fraction Effects on Shear Response for a Plain

Weave.
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Figure 10 Tow Volume Fraction Effects on Shear Response for a 5HS

Weave.
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Figure 11 Tow Volume Fraction Effects on Tensile Response for a

Plain Weave.
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Figure 12 Tow Volume Fraction Effects on Tensile Response for a

5HS Weave.
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