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ABSTRACT  

   

Advanced composites are being widely used in aerospace applications due to 

their high stiffness, strength and energy absorption capabilities. However, the 

assurance of structural reliability is a critical issue because a damage event will 

compromise the integrity of composite structures and lead to ultimate failure. In 

this dissertation a novel homogenization based multiscale modeling framework 

using semi-analytical micromechanics is presented to simulate the response of 

textile composites. The novelty of this approach lies in the three scale 

homogenization/localization framework bridging between the constituent (micro), 

the fiber tow scale (meso), weave scale (macro), and the global response. The 

multiscale framework, named Multiscale Generalized Method of Cells 

(MSGMC), continuously bridges between the micro to the global scale as 

opposed to approaches that are top-down and bottom-up. This framework is fully 

generalized and capable of modeling several different weave and braids without 

reformulation. Particular emphasis in this dissertation is placed on modeling the 

nonlinearity and failure of both polymer matrix and ceramic matrix composites. 

Results are presented for the cases of plain, twill, satin, and triaxially braided 

composites. Inelastic, failure, strain rate and damage effects are included at the 

microscale and propagated to the global scale. MSGMC was successfully used to 

predict the in-plane material response plain and five harness satin woven polymer 

composites, triaxially braided polymer composite and both the in-plane and out-

of-plane response of silicon carbide ceramic matrix composites.
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Chapter 1 

1. INTRODUCTION 

1.1. Motivation 

Advanced composites are being widely used in aerospace applications due 

to their high stiffness, strength and energy absorption capabilities. However, the 

assurance of structural reliability is a critical issue because a damage event will 

compromise the integrity of a composite structures and lead to ultimate failure. 

Composites are often employed in impact damage susceptible locations. The 

associated dynamic response with an impact event is complex due to complicated 

stress wave patterns, material nonlinearity and the inherent nonlinearity associated 

with continuously evolving geometry. A particular problem of interest is the 

impact response of composite fan containment system. Current and next 

generation fan casings are being manufactured not from metals or traditional 

laminated composites, but braided and woven fabric composites. A concern for 

manufacturers is the ability of the fan containment system to meet Federal 

Aviation Agency (FAA) standards for blade-out containment. Current testing 

methods and design procedures are expensive and time consuming; a modeling 

approach is necessary to take full advantage of the composite material’s 

capabilities. 

Traditional analysis methods and material characterization for composites 

typically considers only the macroscale or structural level response. Many 

methods are based on lamination theories or anistropic elasticity analysis. These 

methods are inadequate when applied to a complex structure, such as the fan 
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casing, with a complex material such as a triaxially braided composite. Research 

in multiscale modeling, especially applied to composite materials, is an emerging 

topic and is particularly well suited for this problem. Multiscale modeling allows 

for the analysis of composites at multiple length scales and can track stress, 

damage, and other state variables throughout critical stages. Multiscale modeling 

is essential to capturing the most important damage events in a complex structure, 

where damage can exist at the fiber level, tow level, and braid level. 

1.2. Background 

Textile and braided composites are both architecturally and mechanically 

complex composite materials. In the aerospace industry, there are several 

mainstream weaves and braids; Fig. 1.1 illustrates the most common of those. 

Textile and braided composites differ from traditional laminated composites, in 

that each lamina contains fibers in more than one direction, achieved through 

weaving or braiding. This produces desirable effects, such as reduce propensity 

for delamination, thicker lamina, quasi-isotropic fabrics. However, often 

maximum volume fraction and subsequently strength are sacrificed. In contrast to 

traditional unidirectional laminated composites, textile and braided composites 

often have varying orientations due to undulation, warp, weft, and braid tows. 

Damage mechanisms in these composites contain all those of traditional 

laminated composites plus additional modes that arise due to their geometric 

features. Typically the relevant physical mechanisms that need to be considered, 

in no particular order, are matrix nonlinearity, matrix and fiber failure, tow 

splitting/first matrix cracking, fiber/matrix debonding, tow/matrix debonding, and 
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fiber buckling/kinking. From this list, it is apparent that these mechanisms occur 

at various length scales occurring on the order of <10 microns to >1cm. 

Development of a high fidelity model should contain the most relevant damage 

mechanisms and formulation of a multiscale modeling is the most practical 

method to implement those although various techniques have been developed.  

Plain Twill Satin

Triaxial

 

Fig. 1.1 Commonly Used Weave Patterns 

There are four primary methods used for modeling textile and braided 

composites and are illustrated in Fig. 1.2. The first approach shown is referred to 

as a fully homogenized weave model. In this type of modeling, the architecture of 

the weave is not explicitly represented and a “smeared” (homogenized) approach, 

where the material is considered completely homogeneous, is used. These are 

typically orthotropic, transversely isotropic or anisotropic constitutive models 

carefully formulated to match the macroscopic or overall global response of a 

plain weave laminate. Most often these models focus on capturing the highly 
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nonlinear shear response and the hydrostatic effects, typically employing damage 

or progressive damage mechanics techniques to achieve this. The advantage of 

this type of approach is the simplicity of use and low computational effort. The 

disadvantages are a lack of fidelity and possibility of disregarding or 

overestimating damage mechanisms that are architecturally dependent, i.e. when 

the architecture changes phenomenon such as first matrix cracking will change 

and will not be reflected in this type of approach. A typical application of this 

approach is structural component level modeling. Due to the fast computation 

time and the widespread use of stiffness driven models, this approach is 

particularly well adapted for modeling low stress level composites, particularly 

outside hot spots.  An exhaustive literature review is not presented here because 

the goals of this approach differ from the work presented in this dissertation. 

The second approach shown in Fig. 1.2 is typically referred to as 

micromechanics modeling. In this approaches the architecture is specifically 

modeled and usually discretized into critical subvolumes, with each subvolume 

containing either resin or a homogenized fiber tow. A discerning feature of this 

approach is modeling the fiber tow homogeneously, as opposed to explicitly 

modeling the individual fibers as in the third approach. The benefits and 

disadvantages are discussed further on. Once the material has been discretized 

into subvolumes, iso-strain, iso-stress, or mixed boundary conditions are then 

assumed and a macro-micro relationship is derived. These are referred to as 

analytical methods or analytical micromechanics. However, a second set of 

approaches using finite element techniques to model the architecture have also 
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Fully Homogenized Weave

Weave with Homogenized Fiber Tows

Weave with Explicitly Modeled Microstructure

Multiscale Modeled Weave
 

Fig. 1.2 Various Modeling Techniques for Textile Composites 

 

been developed, known is numerical techniques or finite element based 

micromechanics. Furthermore, there two approaches to ascertain the geometric 

microstructure. The most common type is an approach based on idealized 

repeating unit cells, i.e. a material without imperfections.  In contrast to the fully 

homogenized models, these analytical models are often generalized and are 

equipped to handle changes in features such as fiber volume fraction, tow spacing, 
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thickness, and etc. These methods are mostly associated with analytical 

micromechanics; however, there are a few finite element based approaches in this 

realm. The second most common type is based on the actual microstructure 

obtained from optical image or computed tomography scan. These are almost 

exclusively associated with finite element based approaches. More often than not, 

these approaches formulate a representative volume element of the composite for 

their analysis. These techniques are computationally intensive are used to study a 

specific material. 

One of the first significant reported publications in analytical 

micromechanics modeling was the works of Halpin 1971. This work envisioned 

fabric composites (both 2D and 3D) as a laminate analysis of the “crimped” and 

“non-crimped” portions of the fabric. This allowed for the modeling and 

prediction of the in-plane elastic constants and thermal expansion coefficients. 

This approach and variations are commonly used today in industry and other 

applications requiring only elastic response. Ishikawa and Chou (1982) presented 

three analytical models, the “mosaic model”, “fibre undulation model”, and 

“briding model”. Through use of all three models, the in-plane mechanical elastic 

constants and “knee behaviour” for plain, twill and satin composite could be 

predicted. The “mosaic model”, remains a very popular model in literature for 

elastic analysis and has been extended by other authors.  Ishikawa and Chou 

(1982) also used their “mosaic model” to examine hybrid fabric composites, 

defined as fabric composites with different fiber tow sizes. After these 

publications, there was a lull in research and interest in fabric composites until a 
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resurgence occurred in the late 1980s. At this point, two main methods for 

analysis began emerging: analytical and finite element approaches. In addition, 

the use of braided composites became popular and subsequently research in the 

modeling these materials also began emerging. The works of Naik and his 

colleagues (Naik 1994, Naik 1995) extended the use of analytical methods for 

modeling the elastic constants, nonlinear shear behavior, nonlinear geometric 

effects (crimping and straightening of tows), and overall failure. Naik applied his 

model to both woven and braided composites with success. Other researchers 

(Stanton and Kipp, Jortner, Ko and Pastore, Ko, Dow and Ramnath, Masters and 

Fedro and Ifju, Dadkah, Swanson, Cox and Flanagan, Tabiei and Ivanov) have 

also developed   In contrast to the approximation techniques used in the analytical 

techniques, which provide computationally efficient results that sacrifice on 

accuracy, finite element methods can provide a high fidelity geometric model and 

highly accurate local stress fields at the cost of computational efficiency in both 

analysis and preprocessing. Finite element methods are also less generalized then 

equivalent analytical methods.  Whitcomb and his colleagues (Whitcomb 2000, 

Whitcomb 2004) expanded finite element techniques to model textile composites. 

This approaches typically involves generating a finite element mesh of a weave 

repeating unit cell and applying carefully formulated boundary conditions to 

determine the response of the composite. Other authors (Kriz, Binienda, Quek 

Waas) have also taken similar approaches to modeling textiles and fabrics for 

various applications. 
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In all previously cited works, a common fundamental assumption regarding 

the behavior of the fiber tow bundles is applied: the fiber tow bundles can be 

represented as a homogeneous transversely isotropic material. This assumption is 

valid under certain conditions, such as low stress, strongly bonded (fiber/matrix) 

systems, and static loading. Determination of tow elastic properties is a critical 

issue with this approach. Many authors estimate or apply rudimentary 

micromechanics, such as strength of materials or rule of mixtures, to determine 

the properties. Another issue of this approach is the assumption of linear elastic 

behavior when, in fact, the fiber tow response is high nonlinear and inelastic, 

much like a unidirectional laminate. 

The third approach shown in Fig. 1.2, explicitly models each constituent in 

the composite. While this approach would provide the highest geometric fidelity 

and possibly highest accuracy, it is currently impractical to implement. 

Development of a 3D model and explicitly modeling each fiber, (on the order of 

10,000-100,000 fibers for a typical RUC) would require an extraordinary amount 

of time in experimental characterization and model simulation. In contrast, 

simulations of explicit microstructure in metallic materials often consider less 

than 1000 grains, 1 to 2 orders of magnitude less than the requirement for 

composites. This type of approach would also be “tied” to a specific 

microstructure at a point for a given sample or component.  

The fourth approach is known as a multiscale modeling, wherein the goal is 

to encompass the accuracy of explicitly modeling the microstructure, while 

retaining computational efficiency. There are two primary subsets of multiscale 
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models developed with different purposes. One subset focuses on a high fidelity 

modeling of the architecture, similar to the finite element micromechanics 

mentioned previously, in order to study the nuances of damage initiation and 

evolution. These models are rarely used to model large structures or components 

as they require a significant amount of computational time and may not have been 

derived in a proper constitutive model framework for implementation within a 

commercial software, such as an Abaqus user subroutine. Examples of these 

include the work of Kollegal and Ernst et al. The second subset focuses on the 

development of multiscale models within a constitutive framework for 

implementation within commercial software. These models are typically 

analytical or semi-analytical, computationally efficient and applicable to a variety 

of weaves. The works of Tabiei, as well as the work presented in this dissertation, 

fall into this category. 

In this dissertation a novel homogenization based multiscale modeling 

framework using semi-analytical micromechanics is presented. The novelty of 

this approach lies in the three scale homogenization/localization framework 

bridging between the constituent (micro), the fiber tow scale (meso), weave scale 

(macro), and the global response. The multiscale framework, named Multiscale 

Generalized Method of Cells (MSGMC), continuously bridges between the micro 

to the global scale as opposed to approaches that are top-down and button-up.  In 

addition, this framework is fully generalized and capable of modeling several 

different weave and braids without reformulation. Particular emphasis in this 
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dissertation is placed on modeling the nonlinearity and failure of both polymer 

matrix and ceramic matrix composites. 

1.3. Objectives of the work 

This research aims at the following principal objectives: 

• Develop a generalized multiscale modeling methodology for complex 

composite materials considering nonlinear constitutive effects including damage 

and failure. 

• Characterize various complex composites (weaves and braids) and apply 

those within the multiscale modeling methodology to predict their response. 

• Analyze materials and determine the relevant length scales necessary for 

efficient analysis and the necessary detail for accurate modeling.  

• Experimentally validate and verify the methodology at multiple length 

scales. 

1.4. Outline of the report 

The report is structured as follows: 

Chapter 2 introduces the weave architecture, characterization, and 

experimental observations for use in the multiscale modeling theory. This chapter 

covers two types of architectures: woven and braided fabrics. It covers the 

geometric constraints of the weave architecture as well as assumptions made for 

the analysis. 

Chapter 3 discusses the background and theory of the multiscale modeling 

methodology used to model the complex composites. The chapter begins with the 

background and need for multiscale modeling, particularly in composite 
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applications. Next an overview of the various micromechanics formulations is 

presented and how they are applied to the new methodology, a Multiscale 

Generalized Method of Cells (MSGMC).  

Chapter 4 focuses on the applying MSGMC to modeling triaxially braided 

composites with carbon fiber and polymer constituents. Results are presented for 

elastic, plastic, and viscoplastic for two types of triaxial braids. Results are 

compared to experimental, lamination theory and finite element techniques. 

Chapter 5 applies MSGMC to modeling woven composites with carbon 

fiber and polymer constituents. Results are presented for elastic, plastic, and 

viscoplastic for plain and five harness satin weaves. These are compared to other 

micromechanical (and multiscale), experimental, and finite element techniques. In 

addition, an exhaustive parametric study was performed to assess the sensitivity 

of the model parameters. 

Chapter 6 applies MSGMC to modeling woven composites with 

ceramic/ceramic constituents. Particular research effort was focused on modeling 

the voids at the weave and tow scales, the fiber interface and the damage 

mechanics of the matrix. Results are compared to experimental studies and a 

parametric study was performed to assess sensitivity. 

Chapter 7 focuses on the future directions of the current research. There are 

four main topics for future research: 1) Further development of MSGMC, 2) 

Implementation of material constitutive modeling, 3) Detailed material 

characterization and analysis, 4) Coupled implementation with finite element 

analysis.   
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Chapter 2 

2. WOVEN AND BRAIDED COMPOSITE CHARACTERIZATION 

2.1 Introduction 

Traditional laminated composites with unidirectional aligned fibers have 

simple idealized representative architectures. Woven and braided composites have 

more complex architectures and require a more detail analysis to characterize the 

parameters necessary to capture the most important geometric effects. Typically, 

parameters need to be characterized at multiple length scales and can be either 

dependent or independent on parameters at other length scales. Woven fabric 

composites are generally orthogonal, but this is not necessarily always the case. 

When the weaves are at an angle less than perpendicular they are often called 

“biaxial” weave or braid. Woven fabrics typically consist of two perpendicular 

tows or yarns of fabric, whereas braided fabrics consists of three or more. This 

research focuses on orthogonal/perpendicular woven fabrics as well as triaxially 

braided fabrics. 

2.2 Orthogonal Weaves 

There are several types of orthogonal weaves, but not all are commonly used 

in the aerospace industry as a composite constituent. Many types of fabrics are 

products of the textile industry and are still unexplored in the area of aerospace 

composite structures. Some common weaves include: plain, twill, satin, basket, 

and crows foot. These are illustrated in Fig. 2.1. Characterization will be 

presented for plain, twill and satin weaves. In the following characterization, the 

following assumptions/approximations are made: 
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1. The fiber tows are assumed to have rectangular cross section. 

2. The undulation is discontinuous and occurs only between tows. 

3. The twist of the tows is negligible. 

4. Tow fiber volume fraction is uniform throughout the RUC. 

Plain Twill Satin

Crows foot Basket
 

Fig. 2.1 Orthogonal Textile Weave Patterns 

 

2.2.1 Plain Weave 

Using the previously discussed assumptions, the plain weave RUC can be 

dimensioned as shown in Fig. 2.2. The plain weave has a one-over-one-under 

fabric pattern. This is one of the more commonly used fabrics for aerospace 

applications. As will be explained further in detail, the weave will need to be 

discretized into orthogonal three dimensional parallel piped subvolumes, known 

as subcells. The plain weave will be discretized into 5 5 4x x  subcells. The RUC is 

discretized into subcells by using key geometric features as boundaries, i.e. the 

tow boundaries, and can be seen in Fig. 2.3. In this figure, the blank subcells 
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represent the matrix material and the subcells with a hatch pattern represent the 

tow subcells. The orientation angle is represented by the angle of the fibers, i.e. 

orientation of the hatch pattern. 

w

w w

w

δ

δ/2

δ/2δ/2

δ/2

δ

t

 

Fig. 2.2 Discretized Plain Weave Architecture 
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Fig. 2.3 3D Subcell Discretization of Plain Weave Composite 

 

Due to the assumptions previously stated, it is important to ensure that the overall 

fiber volume fraction, 
fV , is correctly represented, which depends on the tow 

fiber volume fraction, 
towfV , fiber tow width, w , tow spacing,  , and the  ply 

thickness, t . The total volume fraction of the RUC can be expressed by summing 

the fiber volumes over all the subcells and dividing by the RUC volume. 

 
 

  

28 4
2

2 2 2 2 towf f

w t
w t

V V
w w t



 

 
 

 
 

 (2.1) 

This can be further simplified to  

 
  towf f

w
V V

w 



 (2.2)  

From Eq. (2.2) it can be seen that thickness is not directly present. In application, 

thickness and 
towfV  are typically inversely proportional, but this is not always true. 

The geometry of the RUC can be constrained based on any three of the four 



  16 

variables, shown in Eq. (2.2). Specifying all four variables will violate the 

geometric constraints. The last parameter needed to calculate is the undulation 

angle for the subcells containing tows that are undulating. Using the assumption 

that the undulation is uniform across one subcell and discontinuous, the 

undulation angle can be approximated by, 

 arctan
2

t




 
  

 
 (2.3) 

The undulation angle is present in the following subcells for the (α,β,γ) coordinate 

system depicted in Fig. 2.3: (2-3,2,1), (2-3,4,1), (2-3,1,2), (2-3,3,2), (2 3,5,2), (2-

3,2,3), (2-3,4,3), (2-3,1,4), (2-3,3,4), (2 3,5,4), (2-3,2,5), and (2-3,4,5). The 

dimensions for each subcell are represented by the variables D ,H, and L, 

representing the dimensions in the 1-, 2-, and 3-direction, respectively. For the 

plain weave the dimensions are shown in (2.3). 

 

 / 4, / 4, / 4, / 4D t t t t  

 , ,H w w      

 , ,L w w      

(2.4) 

2.2.2 Twill, Harness Satin, and Other Weaves 

 Two other common weaves are the twill and 5 harness satins (Figs. 2.4 and 

2.5). A twill weave is characterized by its distinctive diagonal pattern seen in 

bulk. The twill pattern can be woven in many different configurations, but the 

most common is the 2x2 which will be analyzed in this study. This means that 

each tow goes over-two-under-two. The adjacent tows are offset by one tow to 
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produce the diagonal effect. Fig. 2.4 demonstrates the key features of a twill 

pattern. 

 

Fig. 2.4 Twill Weave Diagonal Pattern 

  

Harness satin weaves are unique because no adjacent tows undulate at the same 

point. Typically, harness satin weaves are denoted with a numerical character 

prefacing the word “harness satin”, i.e. “5-harness satin”. This denotes a 4x1 

pattern, where a tow goes over four and under one. Another common pattern is 

the 8-harness satin where this is a 7x1 pattern. Fig. 2.5 shows the key features of a 

5-harness satin weave. 
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Fig. 2.5 5 Harness Satin Weave Pattern 

  The geometry of these fabrics will need to be constrained in the same manner 

as that of the plain weave, and both the twill and 5-harness satin are constrained 

by Eq. (2.2). It can also be shown that any other orthogonal weave can be 

constrained by this relationship. The undulation angle is also approximated in the 

same manner as that of the plain weave. Subcell stacks 2-5 are the ones 

containing the undulating tows, this is explained further on. To discretize the twill 

and 5-harness satin weaves, the same methodology used on the plain fabric is 

employed. For easier visualization, the discretization will be described in terms of 

subcell stacks, where these stacks correspond to through thickness groups of 

subcells (similar to the subcells shown in Fig. 2.3). A total of 11 unique stacks can 

be assembled together to form each weave pattern, like a mosaic, as shown in Fig. 

2.6. For both the twill and 5-harness satin, the configuration is shown in Figs. 2.7 

and 2.8, respectively. Any other orthogonal weave can be assembled using these 

subcell stacks. Each stack has the same thickness dimensions as specified in D of 

Eq. 2.4. The dimensions of both weaves are shown below. If any refinement of 
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the geometry or subcell changes are made, these dimensions are invalid. For a 

twill weave, the subcell dimensions are 

 

 / 4, / 4, / 4, / 4D t t t t  

 , , , ,H w w w w          

 , , , ,L w w w w          

(2.5)  

 

and for a 5 harness satin the subcell dimensions are 

 

 / 4, / 4, / 4, / 4D t t t t  

 , , , , ,H w w w w w            

 , , , , , .L w w w w w            

(2.6) 

 

1 2 3 4

5 6 7 8

9 10 11

 

Fig. 2.6 Subcell Stacks for Orthogonal Weaves 
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Fig. 2.7 2x2 Twill Subcell Stack Configuration 
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Fig. 2.8 5 Harness Satin Subcell Stack Configuration 

2.3 Triaxial Braids 

Triaxial braids can be split into two categories: a) traditional triaxial braid, 

the more commonly used fabric, and b) true triaxial braid. Fig. 2.9 shows the 

typical components of a triaxial weave composite. The traditional triaxial braid 

differs from the true triaxial in several aspects, and a comparison between them is 

shown in Fig. 2.10 and Fig. 2.11.  
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Fig. 2.9 Typical Triaxial Braid Components 

First, in the true triaxial, all tows have the same cross sectional area. On the 

other hand, the traditional triaxial has an axial tow with twice the cross sectional 

area as the braided tows. To maintain triaxiality, there is twice the number of 

braided tows as compared to axial tows. Second, in the traditional braid, the axial 

tow does not undulate, while the true triaxial has all tows undulating evenly and 

uniformly. Characterizing the geometry of a triaxial braid is more involved than 

of the orthogonal weaves. A detailed derivation and characterization of all the 

parameters is shown in the following sections. 

 
 

Fig. 2.10  Traditional Triaxial Braid Fig. 2.11  True Triaxial Braid 

2.3.1 Tradiational Triaxial Braids 

A typical architecture of a traditional triaxial braided composite is shown in 

Fig. 2.10 with the repeating unit cell indicated by the black box. The triaxial braid 

RUC consists of straight axial fiber tows and braided fiber tows oriented at an 

angle θ. It is assumed for this analysis that the architecture being analyzed can be 
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represented by an idealized homogenized RUC, thus imperfections in the 

architecture are not considered.  

The traditional triaxial braided composite is composed of three significant 

volumes: pure matrix, axial tows, and braided tows. The braided tows are offset 

from the axial tows at an angle θ, known as the braid angle. The total volume of 

the RUC is the summation of each individual volume as denoted in the following 

equation, where subscripts 0° denotes the axial tow, ±θ denotes the braided tows, 

and m denotes the pure matrix. 

 
0o mV V V V    (2.7)  

The overall volume fraction of fibers (filaments, as opposed to tows) can be 

computed by identifying the fiber volume fractions in both the axial and braided 

tows and then determining the total volume of fibers in the RUC. Subscript f in 

the following equations denotes the fiber (as opposed to the tow). 

 
0

0o
of f

f

V V V V
V

V

  
  

(2.8) 

The volume of the RUC in Equations (2.7) and (2.8) was previously expressed in 

terms of the volumes of the tows and matrix, but it is also useful to express this in 

terms of physical parameters that are typically specified during manufacturing 

processes or can be identified in micrographs, such as the tow width, spacing and 

thickness. The RUC volume can be described as a parallelepiped consisting of 

length (L), height (H) and depth (D). To generalize the traditional triaxial braided 

composite architecture, it is assumed that the axial and braided tows have 
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independent geometries. The RUC volume is only dependent on the width and 

spacing of the braided tows and the thickness of both the axial and braided tows. 

It has no direct dependence on the axial tow width, but this does not imply that it 

is arbitrary, as will be shown later. In the following, t denotes the thickness and w 

denotes the width of a tow or RUC, while w’ denotes the spacing between tows. 

 V DHL
 

 
1

'
sin

L w w 


  
 

 
2

'
cos

H w w 


  
 

0
2D t t  

 

(2.9) 

Since the axial tows do not undulate, their volume can be directly computed based 

on the cross-sectional area of each tow, A, and the length of the RUC.  It must be 

noted that the coefficient 2 in (2.10) comes from the presence of two axial tows in 

the RUC. 

 
 0

0 0

2
2 '

sin

o

o o

A
V A L w w 


   

 

(2.10) 

The volume of the braided tows is more difficult to determine directly, but can be 

conveniently written as a proportion to the volume of the axial tows expressed as 

a scalar m. This scalar m can be approximated for small undulations as shown, 

 
0 0 cos

2

oV A
m

V A 




 

 
 

(2.11) 
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For the simple case where the cross sectional areas of the axial tow is twice that of 

the braided tow, with a braid angle of 60 degrees, this results in m= 0.5. 

Substitution of Equations (2.9), (2.10), and (2.11) into Equation (2.8) yields, 

 

 

0
0

0

1
' ( 2 )

cos

o
o

o

f

f

f

V
A V

m
V

w w t t



  




  

 
 

 
 

 
  

 

 

(2.12) 

Typically, fiber volume fraction is thought of as a specified property in which the 

braided tow spacing is not specified. Therefore it is beneficial to rewrite Equation 

(2.12) as, 
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(2.13) 

At this point, the architecture is constrained in terms of several parameters, but 

the tow cross-sectional area is still not defined. Therefore an assumption is made 

regarding the cross-sectional area of the tows. For simplicity of integration with 

the generalized method of cells, the present analysis considers tows to be of a 

rectangular cross section of width w and thickness t. This yields a final equation 

providing the braided tow spacing expressed as follows. 

 

 
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(2.14) 
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The rectangular approximation of tows is acceptable since the overall fiber 

volume fraction and local fiber volume fractions are accurately represented. The 

effective elastic moduli and first failure modes are considered in this study, thus 

the representation rectangular cross section of the tows provides acceptable 

results. If nonlinear damage progression and failure is to be considered, a more 

refined cross section may be necessary. The axial tow spacing is not arbitrary, as 

mentioned previously, and can be determined using Equations (2.9) and (2.13) 

expressed as follows, 

 
 

0 0

1
' '

cos
o ow w w w 


   

 

(2.15) 

Lastly, the undulation angle of the braided tows can be defined in terms of the 

thickness and the braided tow spacing as follows, 

 

0arctan
'

sin

ot t

w










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 
 

  
 
 

 

(2.16) 

The resulting characterization of the traditional triaxial braided composite 

architecture is dependent on ten parameters. Table 2.1 lists all the parameters with 

additional suggestions as to how they may be determined. Typically, in an 

idealized problem, it is assumed that the tow fiber volume fractions 
0ofV and 

fV


are equivalent and uniform.  If the cross-sectional areas are assumed to be 

rectangular, it is simplified to only seven parameters being needed. The two 

parameters defining tow spacing are constrained based on the parameters listed in  

Table 2.1. 
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Two unique types of triple periodic repeating unit cells, of size D×H×L and 

matching the dimension given by the microstructural parameters, were discretized 

into n
× n

× n
 parallelepiped subcells, with each subcell having dimensions d 

× h
× l . A simplified RUC was developed for the purpose of reducing 

computation effort and for eventual implementation in finite element analysis and 

optimization algorithms. A refined RUC has also been developed for detailed 

material characterization purposes and provides more detailed local stress/strain 

states (Fig. 2.12).  

 

Table 2.1 Triaxial Braided Composite Parameters Determination Methods 

Parameter Determination Method 

fV  ASTM D3171 

0ofV ,
fV


 Assume 80% for PMC 

0ow , w  , ,
0

t , t   
Optical microscope 

measurement 

0oA , A   
Shape function or 

approximation 
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Fig. 2.12 Traditional Triaxial Braid Discretized RUCs (top simplified, bottom 

refined) 

 

The simplified model discretizes the traditional triaxial braided composite RUC 

into four architecturally governed sections through the width and four through the 

thickness as shown in Fig. 2.12. The through-width subcells are separated into 

sections containing axial tows (Γ=1 and Γ=3) and those that do not (Γ=2 and 

Γ=4). The through-width subcells are separated into sections of either axial or 

braided tows. For subcells with A=1 and A=4, the properties from the mesoscale 

are rotated by an angle θ to represent the braid; subcells Γ=2 and Γ=4 are rotated 
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once more by angle φ to represent the undulation. The end result is that each 

subcell contains only a single tow material, either axial or braided, with correct 

orientation. No pure matrix regions are explicitly represented. To maintain a true 

representation of the previously described architectural parameters, the geometric 

dimensions and fiber volume fraction of each subcell are analytically determined 

and expressed in terms of the architectural parameters by,  

 
 
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(2.17) 

With the exception of subcells containing axial tows, all subcells have an 

effective volume fraction that encompasses the resin rich sections which are not 

directly represented. As can be seen from Equation (2.14), as the fiber volume 

fraction increases, 'w   decreases along with the volume of resin rich sections. 

This indicates that at high volume fractions, the simplified model is not an 

accurate approximation. The subcell effective volume fractions are determined by 

enforcing the correct overall volume fraction as well as the correct volume 

fraction per column and per row of the subcells. The overall fiber volume fraction 

in the simplified RUC is matched analytically to that of the true RUC, with the 

final expression.  
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(2.18) 

The expressions for the fiber volume fractions of each subcell are given in Table 

2.2 and have been determined through the use of Equations (2.7)-(2.16). It is 

important to note that undulation is represented in the 2 and 4 subcell columns 

through rotation of the effective microscale properties of the braided tow by angle 

φ.  

A refined RUC that further discretizes the traditional triaxial braided 

composite RUC into subcells that explicitly include the resin rich regions is 

shown in Fig. 2.12.  Note that a top view of the RUC is shown in this case. This 

RUC takes into consideration the braided tow spacing, which was only effectively 

represented in the simplified model. The through-thickness discretization is 

Table 2.2 Simplified RUC Effective Fiber Volume Fraction by Subcell 

Subcell {A,B,Γ} Fiber volume fraction 

{2,1,1},{2,1,3},{3,1,1},{3,1,3} 
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  31 

identical to that of the simplified model, separating the axial and braided tows. 

The in-plane discretization also follows a similar methodology to the simplified 

RUC, where subcell dimensions are governed by geometrical parameters. This is 

in sharp contrast to a typical finite element mesh, in which element shape and 

dimensions lack physical meaning. In Fig. 2.12, key dimensions are shown and 

defined in Table 2.3. These dimensions are derived from the architectural 

parameters previously mentioned. The refined traditional triaxial braided 

composite RUC contains a total of 572 subcells. 

2.3.2 True Triaxial Braid 

 Unlike the traditional triaxial braid architecture, whose axial tows are 

merely laid straight between the biased (±θ°) tows, the true triaxial braid 

architecture offers the unique property of having the axial fiber tows interweaved 

with the biased tows. Fig. 2.13 shows a more detailed view of the RUC for the 

true triaxial braid. Since the axial tows are braided through the biased tows in a 

manner such that the axial tow always lies on top of the +θ tows and below the –θ 

tows, while the +θ tows always lie on top of the –θ tows, not only are the axial 

tows interleaved through the biased tows, but also the biased tows are undulated 

in the ±θ material directions.  Therefore, this true triaxial braid architecture 

presents a unique microstructure that has yet to be fully developed with 

applications as opposed to traditional triaxial braided composites. 
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Fig. 2.13 Repeating unit cell of the idealized “true” triaxial braid architecture 

 

 With the geometric microstructural differences in the two triaxial braid 

patterns clearly identified, it is necessary to constrain the microstructure (i.e., 

define the biased tow spacing, axial tow spacing, and maximum producible 

volume fraction) as a function of the braid angle, volume fraction, and tow 

geometries.  In the following section, w, t, s, and A0 are used to denote the tow 

Table 2.3 Refined RUC Subcell Dimension Parameters 

 

Parameter Value 

x1 
 

1
'

2sin
w w 


   

x2 '

sin

w 


  

x3 
 

1
'

2cos
w w 


   

x4 '

2cos

w 


  

x5 
0

'1

2 2cos
o

w w
w 


  

 
 

 

x6 
0

' 1

4cos 2 2cos
o

w w
w 

 
  

  
 

 

 



  33 

width, thickness, spacing, and cross sectional area, respectively, while Vf and Vft
 

are the overall fiber volume fraction and the tow volume fraction, respectively.  

The braid angle, θ, denotes the angle between the biased tows and the axial tows.  

The subscript, a, is used to denote properties of the axial tows, and the subscript, 

b, denotes the biased tow properties.  Capital variables with no subscript, L, W, D, 

and V, are used to denote RUC scale properties of length, width, thickness, and 

volume, respectively. 

 

Fig. 2.14 Idealized RUC architecture of the “true” triaxial braid with variable 

labels 

 The geometry of the traditional triaxial braid by introducing a parameter, m, 

which represented the ratio of the volume of the axial tows to the volume of the 

biased tows.  This process allowed the volume of the biased tows to be expressed 

analytically without ignoring the undulations in the biased direction.  Therefore, 

assuming the axial tows and the biased tows have the same tow volume fraction, 

Vft
, and assuming the tow cross section can be represented as rectangular, the 

biased tow spacing for the “traditional” triaxial braid architecture is constrained 

via the following equation, 
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(2.19) 

 However, since the tow thickness is small in comparison to the tow width, the 

undulations in all tows are ignored for the purpose of calculating the tow volumes 

in the true triaxial braid architecture. This simplification allows the microstructure 

to be constrained in terms of the braid angle, volume fraction, and tow geometries 

without introducing any additional parameters.  Furthermore, the tow cross 

section is represented via a rectangular approximation, and it is assumed that 

analysis of the idealized microstructure provides an accurate representation of the 

effective composite scale elastic properties without accounting for any 

imperfections within the microstructure. This idealized microstructure is shown in 

Fig. 2.14 with all of its variables labeled, and its subsequent GMC discretization 

via subcell stacks is shown in Fig. 2.15. 

 

Fig. 2.15 GMC subcell stack discretization of the idealized “true” triaxial braid 

RUC 
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 For the true triaxial braid, the total RUC volume may be written as 

      
 

(2.20)  

where the RUC length, L, and the RUC width, W, are given by 

 
  

     

     

(2.21) 

 
  

     

     

(2.22) 

 Furthermore, since no more than two tows are stacked together through the 

thickness within the braided lamina, the total RUC thickness, D, can be expressed 

as follows. 

         
(2.23) 

 Therefore, the overall volume fraction may be written as 

 
   

          

  

(2.24) 

where Va and Vb are the volumes of the axial and braid tows, respectively, within 

the RUC.  Using a rectangular cross section for the tows, Va and Vb can be written 

directly in terms of the tow dimensions and the braid angle. 

         

      
     

     

(2.25) 
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(2.26) 

 Substituting (2.20) – (2.23) and (2.25) – (2.26) into (2.24) yields, 

 
   

                   

               

(2.27) 

 However, the volume fraction is desired to be an input parameter and the 

biased tow spacing, sb, is often a variable difficult to measure experimentally. 

Therefore, the biased tow spacing is fully constrained by rearranging (2.27) in 

terms of the braid angle, volume fraction, and tow geometries. 

 
   

                   

         
    

(2.28) 

 With the biased tow spacing constrained, the axial tow spacing can be derived 

from the overall RUC width. As shown in Eq. 2.22, the RUC width, W, can be 

expressed either as shown in Eq.2.29 or as follows, 

            
(2.29)  

 Therefore, equating Eq. 2.29 and Eq. 2.22 constrains the axial tow spacing as 

follows, 

 
   

                  

             
    

(2.30)  

 Furthermore, in addition to constraining the geometry, it is also necessary to 

limit the maximum volume fraction to be physically feasible within context of the 
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true triaxial braid pattern.  Therefore, the dimension x* must satisfy the following 

relationship in order to ensure that the axial tows will fit between the bias tows. 

             
(2.31) 

 Meanwhile, the x* term can be expressed as follows, 

 
     

       °    

          °  

(2.32) 

 Therefore, the lower bound of the biased tow spacing is expressed as follows, 

 
   

          

     
      °    
         ° 

  
 

(2.33) 

 Substituting (2.33) into (2.27) constrains the upper bound of the volume 

fraction for the true triaxial braid. 

 
   

                   

 
          

     
      °    
         ° 

  
           

 

(2.34) 

 If the axial tows and biased tows have identical geometries, (2.34) proves to 

be independent of braid angle and simplifies conveniently to the following form, 

 
   

   
  

(2.35) 

 Optical micrographs have shown the tow volume fraction to be approximately 

60%, therefore the maximum physically feasible volume fraction of the true 

triaxial braid is 30%. However, by modifying the arrangement of the biased tows, 

such that every other +θ tow lies flat along the bottom of the lamina with no 

undulations at all while the remainder of the +θ biased tows remain undulated as 
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they are shown, the minimum biased tow spacing is significantly reduced.  

Furthermore, by increasing the number of flat biased tows between each 

undulated biased tow in the previously described modification of the true triaxial 

braid, the biased tow spacing can be reduced to zero allowing significantly higher 

volume fractions to be produced. The extension of this microstructural 

characterization and the subsequent RUC definition for the three-step 

homogenization procedure to account for modifications with an arbitrary number 

of flat biased tows between each undulated biased tow is outside the scope of the 

present study. Future work will consider these implementations. 

 Once the microstructural geometry is fully constrained, the idealized 

microstructure of the RUC must be discretized into a series of subcell rows and 

columns consisting of through-the-thickness subcell stacks, which are 

homogenized in the 2
nd

 homogenization step prior to the final in-plane 

homogenization step.  A coarse subcell representation of the true triaxial braid 

microstructure consistent with the coarse discretization of the traditional triaxial 

braid is employed for this comparison of the two triaxial braid architectures.  The 

volume fraction of the axial tow subcells is assumed to have a tow volume 

fraction of 60%.  However, since a portion of the volume of the biased tow 

subcells shown in Fig. 2.15 is actually occupied by pure matrix, an equivalent 

effective volume fraction     
   must be imposed for each of the biased tow 

subcells, where the index   denotes the subcell column number.  Since the 

volume of the biased tows in subcell column 1 (β=1) is equal to that of the third 

subcell column (β=3) and likewise for the 2
nd

 and 4
th

 subcell columns, the 
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effective volume fraction for the biased tow subcells can be derived by only 

considering the first two columns of subcells.  Due to symmetry between the 

subcell rows (denoted by the index γ), all biased tow subcells in a given subcell 

column have the same effective volume fraction.  Therefore, let    
   denote the 

equivalent effective volume fraction for the biased tow subcells in subcell column 

 .  Then the volume fraction can be written as follows, 

 
   

           
          

     
               

(2.36) 

 Furthermore, the effective volume fraction of the first subcell column can 

easily be expressed in closed form, 

 
   
     

  
   

    
          

(2.37) 

 Therefore, (2.36) is rearranged to yield the effective volume fraction of the 

second subcell column. 

    
     

 

 
                         

   
      

     
      

(2.38) 

 With the geometry fully constrained and the effective volume fraction of the 

biased tow subcells defined analytically, the final step of the microstructural 

characterization is the definition of the Euler rotation angles used to describe the 

undulations of the tows.  Therefore, let the Euler rotation angle,  , denote the 

angle of undulation of the tows along their respective axes. The angle 
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representing the tow twist was shown to be insignificant to the degree of machine 

precision for elastic property predictions and is, therefore, neglected for this 

study. 

 Therefore, let the undulation angles for the biased tow subcells be denoted as 

   
       

, where the index   denotes the order of the subcell layers within the 

subcell stacks in the through-thickness direction corresponding to the X1 material 

coordinate direction, such that  =1 corresponds to the bottom surface of the 

lamina, and  =2 corresponds to the top surface of the lamina, while the indices 

  and   denote the subcell columns and rows, respectively.  Furthermore, it is 

recognized that the biased tows do not undulate as they cross over the axial tows.  

Therefore, the undulation angles for the biased tows in the first and third subcell 

columns are set to zero     
       

    
       

    
       

    
       

   , and the 

undulation angles for the biased tows in the second and fourth subcell columns 

are defined as follows, 

    
       

    
       

    
       

    
       

        
  
  

     
 

(2.39) 

    
       

    
       

    
       

    
       

         
  
  

      

(2.40) 
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 Likewise, the undulations of all axial tows can be derived from considering 

only axial tow subcell (2, 1, 1). 

   
       

   
       

       
   
 

 
 

(2.41) 

 

   
       

   
       

        
   
 

 
 

(2.42) 

 Therefore, this microstructural characterization of the true triaxial braid 

architecture constrains the microstructural geometry of the idealized RUC, derives 

the equivalent effective volume fractions for the biased tows subcells that account 

for the pure matrix regions within the coarse subcell discretization, and defines 

the undulation angles of all subcells within the RUC.  

2.4 Fiber Tow Architecture 

 For all previous mentioned weaves and braids, the architecture of the fiber 

tows was not yet discussed and needs to be considered. For the following 

analysis, two types of fiber tows are considered: square and hexagonal packed. 

Each of these architectures can have various levels of refinement. These analyses 

only consider the simplest formulation of discretized subcells for both 

architectures. Fig. 2.16 shows a comparison between the two architecture 

configurations. These are both double periodic RUC. This RUC is assumed to be 
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infinitely long in the thickness direction. These are defined in terms of the tow 

volume fraction, 
towfV , and their dimensions are shown below. 

Square Packing: 

 

 ,1
tow towf fH V V   

 ,1
tow towf fL V V   

(2.43) 

Hexagonal Packing: 
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(2.44) 
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Fig. 2.16 Fiber Tow Architectures: Left is square packing, Right is hexagonal 

packing 
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2.5 Future Work 

The research presented previously focused on simplistic and idealized 

architectures. Two possible paths of future research can originate from improving 

these limitations. Firstly, the assumptions of a rectangular tow and square fiber 

are suitable for first order approximations and served well for analysis (see 

Chapters 4-6). However, improving the architecture can result in higher fidelity 

analysis of local fields and possibly higher fidelity. For example, a fiber tow 

bundle is typically elliptical in cross-section shape and a higher order model could 

discretized as shown in Fig. 2.17. Improving the undulation assumptions will also 

help improve the out of plane predictions. Both of these improvements will cost 

computational efficiency and analysis time, therefore an optimal compromise is 

necessary. 

 

Fig. 2.17 Possible Elliptical Tow Discretization 

 Investigation the actual microstructure of a weave or braid reveals that 

there is significant variation in the actual microstructure. In addition, laminates 

can have ply level nesting in which successive plies are not planar and interact 

with each other (see Fig. 2.18). Developing a representative volume element to 

model the weave variations as well as the variations in the fiber tow architecture 

will improve the stochastic modeling capabilities for modeling woven and braided 

composites. 
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a)  

b)  

Fig. 2.18 Triaxial Braided Composites Microstructure From Optical 

Microscopy: a) 32x b) 200x 
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Chapter 3 

3. MULTISCALE GENERALIZED METHOD OF CELLS 

3.1 Background and Introduction 

Multiscale modeling is in an effective technique used to capture effects of 

both geometry and material that spans several length scales. Multiscale modeling 

has been particularly useful for understanding the microstructure on the global or 

structural level response. In the past, it has been applied to both metals 

investigating crystalline microstructures and composites understanding 

constituent response and effects. Although nomenclature in the literature varies, 

typically a multiscale modeling analysis will follow contain at the very least a 

micro and global response.  For example, in the case of woven composites, there 

are several relevant length scales for continuum mechanics. These scales, 

progressing from left to right in Fig. 3.1, are the microscale (constituent level; 

fiber, matrix, interface), the mesoscale (tow), the macroscale (repeating woven 

unit cell), and the global/structural scale. Traditionally, one traverses (transcends 

(moves right) or descends (moves left)) these scales via homogenization and 

localization techniques, respectively (Fig. 3.1 and 3.2a); where a homogenization 

technique provides the properties or response of a “structure” (higher level) given 

the properties or response of the structure’s “constituents” (lower scale). 

Conversely, localization techniques provide the response of the constituents given 

the response of the structure. Fig. 3.2b illustrates the interaction of 

homogenization and localization techniques, in that during a multiscale analysis, a 

particular stage in the analysis procedure can function on both levels 
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simultaneously. For example, during the process of homogenizing the stages 

represented by X and Y to obtain properties for the stage represented by V, X and 

Y should be viewed as the constituent level while V is on the structure level. 

However, during the process of homogenizing V and W to obtain properties for 

U, V is now on the constituent level (as is W). Obviously, the ability to 

homogenize and localize accurately requires a sophisticated theory that relates the 

geometric and material characteristics of structure and constituent. 

The Generalized Method of Cells (GMC) (Paley and Aboudi, Aboudi) is a 

micromechanics theory that allows for localization and homogenization between 

the micro and global length scales of a repeating unit cell. This theory is well 

suited for analyzed such things was a fiber embedded in matrix repeating unit cell 

of a laminated composite. GMC can be applied to any material composed of 

repeating unit cell architecture. GMC descretizes the materials periodic repeating 

unit cell in subcells and applies period boundary conditions at the edges and 

displacement/traction boundary conditions at the interface. Through the boundary 

conditions, a concentration matrix A, allows the determination of subcell strains 

in terms of globally applied strains. The concentration matrix effectively localizes 

global strains to local subcell strains. The global stress can then be determined by 

homogenizing the subcell stresses. 
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Fig. 3.1 Illustration of associated levels scales for woven/braided composite 

analysis. 

 

 

Fig. 3.2 (a) Homogenization provides the ability to determine structure level 

properties from constituent level properties while localization provides the ability 

to determine constituent level responses from structure level results. (b) Example 

tree diagram. 

  

3.2 Reformulated Triply Periodic Generalized Method of Cells Theory 

Typically micromechanics rely on empirical assumptions for the stress strain 

relationships between subcells. However, Generalized Method of Cells uses 

kinematic formulations to derive the stress strain conditions as opposed to 

empirical assumptions. For the generalized multiscale framework, both a doubly 

periodic and triply periodic formulation of GMC will be applied, the details of 

(b) (a) 
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these formulations can be found in [Aboudi] and Fig. 3.3 shows the typical 

discretized unit cell. A reformulation of the triply periodic Generalized Method of 

Cells micromechanics similar to that of [Bednarcyk] is shown here. 

H

D

L

H1 H2 H3 H4

L 1

L 2

D3

D2

D1

x2

x1

x3

β=1 β=2 β=3 β=4

α=3

α=2

α=1

γ=
1

γ=
2

 

Fig. 3.3 Example of GMC Repeating Unit Cell consisting of 3N  , 4N  and

2N   

 

The following kinematics are repeated from [Aboudi] as reference and critical 

to the understanding of multiscale model. As in the nature of GMC, a first order 

expansion of the displacement field about the distances from the center of each 

subcell, i.e. 
 

1x


, 
 
2x


, and 
 
3x


, is assumed. 

                  
1 2 3 1,2,3i i i i iu w x x x i

       
      x

 
(3. 1) 

Here, 
 
iw


 are the displacements at the center of the subcell and the 

variables 
 
i


 , 

 
i


 , and 

 
i


  are microvariables for the first order 

expansion about the local coordinates 
 

1x


, 
 
2x


, and 
 
3x


. The variable, 
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 1 2 3, ,x x xx , is the center location of a subcell with respect to the fixed global 

coordinate system. By applying infinitesimal strain theory, the small strain tensor 

in a subcell can be related to the displacement field by 

       , ,

1
, 1,2,3

2
ij i j j iu u i j
  

   
 

(3. 2) 

where 
 
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 
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x









. 

Therefore, each strain component can then be computed in terms of the 

microvariables. Due to the first order expansion of the displacement field, this 

results in constant strains within the subcell, which are referred to as average 

strains. 
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(3. 3) 

Therefore the average strains in the composite RUC can be written as 

 

 
 

1 1 1

1 1 1
n nn

ij ij d h l
d h l

 


  
  

 
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  .
 

(3. 4)  

Assuming an elasto-plastic temperature dependent constitutive model, the 

stress-strain constitutive relationship can be used to determine the average subcell 

stresses, i.e. 
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           I T
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(3. 5)  

where 
 
ij


 is the average stress tensor, 

 
ijklC


 is the elastic stiffness tensor, 

 I

kl


 is the inelastic strains, and 

 T

kl


 is the thermal strains. The global average 

stress can be defined in the same manner as the strains by 
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(3. 6)   

 In order to solve for the microvariables, a set of interfacial boundary 

conditions for continuity of traction and displacement must be established. For 

each subcell, the neighboring subcell must have an equivalent set of displacement 

components at the interface. This leads to the following set of conditions, 
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 
 






 
 







 

 

 







.
 

(3. 7)   

applied for 1,...,n  , 1,...,n  , and 1,...,n  . In the GMC framework, 

these continuity conditions are applied in an average sense across the boundary 

yielding the following conditions. 
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   

   

 

ˆ
ˆ1 1

ˆ
2

ˆ2

3

/2 /2 /2 /2

ˆ

2 3 2 3
/2 /2

/2 /2 /2 /2

/2 /2/2 /2
ˆ

1 3 1 3
/2 /2/2 /2 /2 /2

/2

/2
/2

l h l h

i i
x d x d

l h l h

l ld d

i i
x h x hl d l d

d

i
x l

h d

u dx dx u dx dx

u dx dx u dx dx

u

   

 
 

   

  




   






 

    

    



 
   

    


 





   

   


 

ˆ
ˆ3

/2 /2 /2

ˆ

1 2 1 2
/2

/2 /2 /2

h h d

i
x l

h d

dx dx u dx dx
  




 

   


 

  

 

(3. 8)   

Substitution of the displacement field expansion into the above equation yields a 

set of equations in terms of the microvariables. 

        

       

       

ˆ ˆˆ

ˆ ˆˆ

ˆ ˆˆ

2 2

2 2

2 2

i i i i

i i i i

i i i i

dd
w w

hh
w w

ll
w w

   

   

   

 

 

 

  

  

  

 

(3. 9)   

In the above equation, all the field variables, 
iw , are evaluated at the center of the 

subcell, however it is necessary to evaluate these at a common location, the 

interface. In the global coordinate system, the interface is defined as 

  

 

1 1 2 3

ˆ ˆ

1 1 2 3

, ,
2

, ,
2

I

I

d
x x x x

d
x x x x

 

 

 
  
 

 
  
 

 

 

 

2 1 2 3

ˆ ˆ

2 1 2 3

, ,
2

, ,
2

I

I

h
x x x x

h
x x x x

 

 

 
  
 

 
   
 

 

(3. 10)   
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 

 

3 1 2 3

ˆ ˆ

3 1 2 3

, ,
2

, ,
2

I

I

l
x x x x

l
x x x x

 

 

 
  
 

 
  
 

 

To evaluate the field variables (
 
iw


) at the interface, a first order Taylor 

expansion about the common interface is used. The continuity conditions then 

become, 

 
 

 
   

 
 

 
 

   
 

 

 
 

   
 

 

ˆ
ˆ ˆˆ

1 1

ˆ
ˆ ˆˆ

2 2

ˆ
ˆ ˆˆ

3 3

2 2

2 2

2 2

i i
i i i i

i i
i i i i

i i
i i i i

dd w w
w w

x x

hh w w
w w

x x

ll w w
w w

x x


   


   


   

 

 

 

   
             

   
             

  
        


  
 

 

(3. 11)   

where each field variable and field variable derivative is evaluated at the 

interface. Next, let the functions F , G , and H  be defined as 

          

         

         

1 1

2
2

3 3

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ

I I

I
I

I I

i i i i i
x x

i i i i i
x x

i i i i i
x x

F w f w f

G w g w g

H w h w h

   

   

   

 

 

 

   

   

   

x x

x
x

x x

 

(3. 12)   

where, 
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 

 
 

 
 

 

 
 

 

1

2

3

1

2

3

2

2

2

I

I

I

i
i i

x

i
i i

x

i
i i

x

d w
f

x

h w
g

x

l w
h

x


 


 


 













 
   
 
 

 
   
 
 

 
   
 
 

x

x

x

 

(3. 13)   

The three continuity equations can then be rewritten as 

  

 

 

0 1,...,

0 1,...,

0 1,...,

i

i

i

F n

G n

H n



















 

 

 
 

(3. 14)   

and subsequently these can be written as a summation series 

 
     

1 1 1

0, 0, 0.

n nn

i i iF G H
 

  

    

      

(3. 15)   

These summations lead to the conclusion that 

 
     

1 1 1

0, 0, 0.

n nn

i i if g h
 

  

    

      

(3. 16) 

Under first order theory, in which the second derivative of 
 
iw


is zero,  

      

1 2 3

0, 0, 0.i i if g h

x x x

  
  

  
    

(3. 17)   

In addition, differentiation of the continuity equations with respect to 
1x , 

2x , and 

3x  results in 
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    

   

   

ˆ

1 1

ˆ

2 2

ˆ

3 3

i i

i i

i i

w w

x x

w w

x x

w w

x x







 


 

 


 

 


 

 

(3. 18)   

which can be satisfied by assuming that common displacement functions, 
iw , 

exist such that 

  
i iw w



 

(3. 19)   

and therefore 

   .
I
j

i i
x

w w





x  
(3. 20)   

Using this assumption and Eq. 3.16 a set of continuum relations can be derived 

 
 

 

 

1 1

1 2

1 3

.

n

i
i

n

i
i

n

i
i

w
d d

x

w
h h

x

w
l l

x























































 

(3. 21) 

The previously defined small strain tensor can be written in terms of the common 

displacement functions,  

 
 , ,

1
.

2
ij i j j iw w  

 

(3. 22)   

Substitution of this into the set of continuum relations yields, 
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 

 

 

11 11

1

22 22

1

33 33

1

,      1,..., , 1,...,

,      1,..., , 1,...,

,      1,..., , 1,..., .

n

n

n

d d n n

h h n n

l l n n









  




  




  


   

   

   







  

  

  







 

(3. 23)   

Combining Eq. 3.21a multiplied by h  and summed over   for 1i   to Eq. 3.21b 

multiplied by d  and summed over   for 2i   yields, 

 
    

 

1 2
2 1

1 1 2 1

12 12

1 1

,      1,...,

,      1,..., .

nn

nn

w w
d h dh n

x x

d h dh n





 

  
 



  
 

  

  

 

 

  
    

  

 




 

(3. 24)   

Similar operations yields, 

 
 

 

23 23

1 1

13 13

1 1

,      1,...,

,      1,...,

n n

nn

h l hl n

d l dl n

 





  
 



  
 

  

  

 

 

 

 




 

(3. 25)   

These global-local strain relationships can be cast into matrix form as 

 
G sA J 

 
(3. 26)   

where  

  11 22 33 23 13 12, , ,2 ,2 ,2      
 

(3. 27)   

and 

     111
,..., .

n n n

s

    
 

(3. 28)   



  56 

The interfacial traction continuity conditions, like the displacement 

continuity conditions, are also imposed on an average sense. The conditions can 

be expressed as, 

    

   

   

ˆ

1 1

ˆ

2 2

ˆ

3 3

i i

i i

i i







 

 

 







 

(3. 29)   

for , , 1,2,3i j k   and 1,...n  , 1,...,n  , and 1,...,n  . However, only a 

subset of these equations are independent and they can expressed as, 

    

   

   

   

ˆ

11 11

ˆ

22 22

ˆ

33 33

ˆ

23 23

     1,..., 1, 1,..., , 1,...,

     1,..., , 1,..., 1, 1,...,

     1,..., , 1,..., , 1,..., 1

     1,..., , 1,...,

n n n

n n n

n n n

n n



  



  



  



 

    

    

    

   

    

    

    

   

   

   

   

   

ˆ

32 32

ˆ

13 13

ˆ

31 31

ˆ

12 12

1, 1,...,

     1,..., , , 1,..., 1

     1,..., 1, 1,..., , 1,...,

     , 1,..., , 1,..., 1

     1,..., 1, 1,...,

n

n n n

n n n

n n n

n n





  



  



  







    

    

    

   



    

    

    

   

   ˆ

21 21

,

     1, 1,..., 1, .

n

n n n

 



  



    



     

 

(3. 30)   

By rewriting the subcell stresses in terms of the subcell strains and the 

constitutive law, these conditions can be cast into matrix form as 

   0.I T

M s s sA     
 

(3. 31)   

Combining the interfacial displacement and traction conditions yields  

  I T

s s sA D K     
 

(3. 32)   
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where 

 0
, , .

0

M M

G

A A
A D K

A J

     
       

      

(3. 33)   

Solving for the local subcell strains results in the final micromechanical 

relationship, 

  I T

s s sA D     
 

(3. 34)   

where 

 1 1, .A A K D A D  
 

(3. 35)   

These concentration matrices can be further decomposed into submatrices 

resulting in 

  

 

 

 

111 111

, .

n n n n n n

A D

A D

A D     

   
   

    
   
      

 

(3. 36)   

and leading to a relationship between the local subcell strains and globally applied 

strains, 

        I T

s sA D
  

      .
 

(3. 37)   

Lastly, the local stress in a subcell can be computed by 

                I TI T

s sC A D
     

         
 

(3. 38)   

and the effective composite stress can be computed as 

  * IC   
 

(3. 39)   
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where 

 
   *

1 1 1

1
n nn

C d h l C A
dhl

 
 

  
    

   

(3. 40)   

and 

 
      

* 1

1 1 1

.

n nn
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(3. 41)   

The total unknowns using the traditional solution type is 6n n n   , however 

Bednarcyk proposed a reformulated methodology to reduce the number of 

unknowns to n n n n n n n n n             . The author has derived variation 

of Bednarcyk’s reformulation more akin to the original style of GMC and useful 

for the multiscale framework, it is shown here. 

 The key fundament concept in the reformulation is that the interfacial traction 

conditions results in reduced number of local subcell stress unknowns. These are 

expressed in the following equations: 
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(3. 42) 

To take advantage of this inherent simplification, the interfacial displacement 

continuities are rewritten using the compliance form of the constitutive 

relationship. The compliance form of the stress-strain relationship in a given 

subcell can be written as, 

    .
I

ij ijkl kl ijS
 

   
 

(3. 43)   

Therefore, the modified displacement continuity equations become 
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(3. 44)    

where 
ijklS is the 4

th
 order compliance tensor and summation is implied for 

, 1,2,3i j  . Substitution of Eq. 3.42 into the above results in 
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(3. 45)     

where 
 
ijS


is the compliance matrix in Voigt notation and 

              1 2 3 4 5 6, , , , ,kT T T T T T T
      

  and summation is implied over 
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1,2,3,4,5,6k  . This set of equations contains both the continuity of traction and 

displacement eliminating the need for two sets of continuity equations. In matrix 

form the reformulated relationship is, 

 I

s sAT J D  
 

(3. 46)     

where, 
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

 

(3. 47)      

It is important to note that the matrices A , D , and J are not equivalent to the 

previously derived matrices, but the nomenclature is return because their 

symbolic meaning is equivalent. The final relationship between subcell stresses 

and global stress is 

 I

s sT AJ AD  
 

(3. 48)      

where, 

 1A A . 
 (3. 49)     

The compliance constitutive law at the subcell level can be written in terms of the 

independent unknown subcell stress components which is of the form 
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(3. 50)      

 

or simply written as  

 I

s s sBT  
 

(3. 51)      

The complimentary stiffness constitutive law is 

   I

s s sT B   
 

(3. 52)      

where 

 1.B B
 

(3. 53)      

This can be substituted into the local stress/global strain relationship to form 

   .I I

s s sB AJ AD     
 

(3. 54)      

Solving for the local subcell strains yields 

   .I

s sBAJ BAD I    
 

(3. 55)     
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Finally, comparing this to the original formulation of Aboudi (Eq. whatever), a 

relationship between the original and reformulated concentration matrices can be 

established as 

 1

1

0
,

.
0

M

G

M M

G

A
A BAJ

A J

A A
D BAD I

A





   
     

  

   
      

  

 

(3. 56)      

The local stresses, global stresses, global stiffness, and global inelastic strains can 

be computed in the same manner as previous. The result is an equivalent 

formulation with significantly reduced computational effort. 

3.3 Through Thickness Homogenized Generalized Method of Cells Theory 

Inherent to GMC is a lack of shear coupling due to the first order 

displacement field assumptions. Tabiei [2004] first established that 

homogenization through thickness prior to in plane homogenization results in 

improved shear coupling for problems similar to textile composites. To take 

advantage of this, the original kinematic framework of GMC has to be altered to 

accommodate for these new assumptions. Previously, the interfacial continuity of 

displacements was applied on an average sense over a subcell’s face. However, 

this now remains true only for interfaces between   to ̂ . For the remaining 

interfaces,   to ̂   and   to ̂  the continuity of displacements are imposed as an 

average over the entire through thickness “stack”, i.e. for 1 n   . This is 

reflected in the new set of displacement continuity conditions 
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(3. 57)      

 

and in an averaging sense 
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(3. 58)      

Substitution of displacement field expansion and conversion from integral to 

summation in the 
1x  direction results in 
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   

  
    

   

 

 

 

(3. 59)      

The expansion of the field variable is performed in the same manner as in GMC 

which yields 
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w
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
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
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








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 
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  
        

     
  

  
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








  
    

  

  
       





 

 (3. 60)     

The same functions F , G , and H  from Equations (find) are used, however the 

continuity conditions are now written in the following form due to the through 

thickness averaging. 

  

 

 

1

1

0 1,...,

0 1,...,

0 1,...,

i

n

i

n

i

F n

d G n

d H n











 




 












 

 

 





 

(3. 61)      

Summing each function over the appropriate subcell direction yields 

 
     

1 1 1 1 1

0, 0, 0

n nn n n

i i iF d G d H
   

  

 
        

    

 

(3. 62)      

and the following set of conditions can be deduced 
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     

1 1 1 1 1

0, 0, 0.

n nn n n

i i if d g d h
   

  

 
        

    

 

(3. 63)      

After manipulation the following constraints are derived. 
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 


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 









 

 






















 

(3. 64)     

Applying the defined relationship between the subcell strains to the 

microvariables leads to 

 
 

 

 

11 11

1

22 22

1 1

33 33

1 1

,      1,..., , 1,...,

,      1,...,

,      1,..., .

n
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nn

d d n n

d h dh n

d l dl n









  




  
 



  
 

   

  

  



 

 

  

 

 







 

(3. 65)      

which clear shows the through thickness averaging in the 2 and 3 directions. At 

this stage, it can be realized that the strains 
 

22


  and 

 
33


 are not entirely 

unique. In fact to satisfy the above continuity conditions with a reduced set of 

equations due to the through thickness average, two more sets of conditions on the 

local subcell strains need to be imposed. 

      

     

ˆ

22 22 22

ˆ

33 33 33

 

 

 

 

  

    

(3. 66)      
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This shows that each stack, i.e. for each through thickness group, the strains in the 

2 and 3 direction are equivalent. The normal continuity conditions can be 

rewritten, 
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
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
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 


   

 

 







  

  

  







 

(3. 67)      

The shear continuity conditions are derived to be 

 
 

 

 

12 12

1 1

23 23

1 1 1

13 13

1 1

,      1,..., .

,  

,      1,...,

nn

n nn

nn

d h dh n

d h l dhl

d l dl n



 





  
 



  
  



  
 
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 
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 

 
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
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(3. 68)      

and a similar conclusion can be regarding the independence of the 23-dir shear 

strains. Therefore, 

      ˆ

23 23 23

 

 
   

 

(3. 69)      

and the continuity conditions become 
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(3. 70)      

This yields a  2 1  3 3N N N N N N N N N             set of equations and 

can be cast into matrix form as follows 

 
G sA J 

 
(3. 71)      

where  

  11 22 33 23 13 12, , ,2 ,2 ,2      
 

(3. 72)      

and 
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  

      

     
 

(3. 73)      

Furthermore it can be shown, that the traction boundary conditions are a satisfied 

in a through tickness average sense averaging over the 1 direction also. The 

modified set of  

    
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 
 
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 

 
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(3. 74)      
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The set of independent traction continuity conditions are listed below. 
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     

 

(3. 75)      

 

This now gives a second set of equations on the order of 

 3 2 2 1  3 3N N N N N N N N N N N N                  and can be cast into 

matrix form as follows 

   0I T

m s s sA     
 

(3. 76)      

 

Combining the traction and displacement continuity we get a system of equations  

  I T

s s sA D K     
 

(3. 77)      

where 
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M

G

A
A

A

 
  
 

,
0

MA
D

 
  
 

,
0

K
J

 
  
 

.
 

(3. 78)      

Now we can determine the subcell strains 

  * * I I

s s sA D     
 

(3. 79)      

where 

 * 1A A K , * 1D A D . 
(3. 80)      

Since s is not meaningful, it is of interest to express the local strains in the form 

of the global strains, i.e.  11 22 33 23 13 12, , , , ,       . To accomplish this another 

matrix is introduced, a modified identity matrix. 

 
s sB  , I I

s sB  . 
(3. 81)      

This purpose of this matrix is to associate the local subcell strains with the 

solution strains, for example 

    

   

   

   

   

   
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 

 

 

 

 







 

 



 

 

 





 

(3. 82)      

Note, the B matrix contains only 1s and 0s. Substituting this into the subcell strain 

results 

  * T I T

s s sBA BDB     
 

(3. 83)      

Simplifying yields 
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  I T

s s sA D     
 

(3. 84)      

where  

 *A BA , * TD BD B . 
(3. 85)      

Lastly, the concentration matrices A  and Dcan be decomposed into submatrices, 

as before, and the final localization equation is. 

        I T

s sA D
  

     
 

(3. 86)      

3.4 Reformulated Through Thickness Homogenized Generalized Method of 

Cells Theory 

 The prior formulation solves for the unknown local strain fields, three of 

which are independent of  . Further computational efficiency can be achieve 

through formulation the unknowns as a mixed set of local strain and stress fields, 

all of which are independent of   . This can be accomplished because of the 

zeroth order strain fields leads to zeroth order stress fields and as a result of the 

traction continuity conditions, all stress components in the 1-dir are independent 

of  .  

 This reduces the number of unknowns to 4N N     , which is not a 

function of  . The   independent local stress fields are listed below 
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 

 

(3. 87)      

Substitution of these into the traction continuity conditions yields 
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ˆ
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n
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(3. 88)      

However, only the average continuity conditions are independent and thus used in 

the solution. The minimum required variables to define a stress/strain state of a 

subcell are 
         

1 2 3 4 5, , , , ,T T
    

   and 
 

6T


, (

           
2 22 3 33 4 23, ,
     

          using previous definitions). This is mixed 

set unknowns, i.e. containing both stresses and strains, and requires that the 

displacement and traction continuity conditions be written in terms of these 
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unknowns. To accomplish this, the constitutive law is rearranged such that the 

state at a local subcell is given by 

              

           

           

           

             

11 11 1 12 2 13 3

14 4 15 5 16 6

11 11 12 22 13 33

14 23 15 13 16 12

22 21 1 22 2 23 3

2

I I I

I I I

R T R R

R R T R T

Q Q Q

Q Q Q

R T R R

R

      

     

     

     

      



  

  



     

   

   

  

     

           

           

           

             

           

 

4 4 25 5 26 6

21 11 22 22 23 33

24 23 25 13 26 12

33 31 1 32 2 33 3

34 4 35 5 36 6

31 11

I I I

I I I

I

R T R T

Q Q Q

Q Q Q

R T R R

R R T R T

Q

     

     

     

      

     



  

  





   

   

  

     

   

          

           

             

           
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32 22 33 33

34 23 35 13 36 12

23 41 1 42 2 43 3

44 4 45 5 46 6

41 11 42 22 43 33

44 2

 

I I

I I I

I I I

Q Q

Q Q Q

R T R R

R R T R T

Q Q Q

Q

    
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

 

  



  


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     

   

   
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             

           
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51 11 52 22 53 33

54 23 55 13 56 12
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Q Q

R T R R
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Q Q Q

R

    

      
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     

     



 



  

  



 

     

   

   

  

            

           

           

           

1 1 62 2 63 3
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I I I

I I I

T R R

R R T R T

Q Q Q

Q Q Q

     

     

     

     

  

  

    

   

   

  

 

(3. 89)      
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or more conveniently in matrix form 

          I
F R U Q

    
 

 
(3. 90)  

where 

               11 22 33 23 13 12, , , , ,F
      

       

              1 2 3 4 5 6, , , , ,U T T T
      

   
. 

(3. 91)  

There is no symmetry to either R  or Q in contrast to a typical stiffness or 

compliance matrix. The full details on these matrices are given in the appendix. 

By applying this new constitutive law the displacement and traction continuities, 

respectively, are cast into a matrix form below. 

 I

g s g sA U D J    

0I

m s m sA U D  
 

(3. 92)  

and combining both of these yields 

 I

s sAU D K  
 

(3. 93)  

where 

 
M

G

A
A

A

 
  
 

,
0

MA
D

 
  
 

,
0

K
J

 
  
 

.
 

(3. 94)  

Solving for the unknown local fields U yields 

 1 1 I

s sU A K A D   
 

(3. 95)  

Next, it is useful to convert 
sU to the well known 

s . This can be established 

through use of the constitutive law and  modified identity matrices. 
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s F s U sB F B U  

 
(3. 96)  

where  

 I

s s s s sF R U Q  
. 

(3. 97)  

FB  and 
UB are matrices containing only 1s and 0s and serve the purpose of 

collecting the appropriate terms from each matrix 
sF  and 

sU . Substitution of the 

above yields 

    1 1 1 1 I

s F s U F s F s U sB R A K B A K B R A D B Q B A D         
 

(3. 98)  

or 

 
. 

I

s sA D   
 

(3. 99)  

where 

 

.  

1 1

1 1 .

F s U

F s F s U

A B R A K B A K

D B R A D B Q B A D

 

 

 

     

(3. 100)  

As previously, the A  and D  can be decomposed into square submatrices 

resulting in the final solution 

 
. 

      I

sA D
  

   
 

(3. 101)  

3.5 Multiscale Generalized Method of Cells Theory 

Multiscae Generalized Method of Cells (MSGMC) is a multiscale framework 

that takes the existing methodology prescribed by the Generalized Method of 

Cells and implements further than the typical macro-micro or global/local 

framework. The multiscale framework allows for the analysis of innumerate 
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length scales, as physically relevant. An example would be textile composites 

where there are three distinct length scales: the weave RUC, the tow RUC, and 

the constituents. GMC is only capable of bridging between the weave RUC and 

tow RUC or the tow RUC and constituents, not all three. Another example is a 

fiber reinforced composite with a particle reinforced matrix. Here the three length 

scales would be the composite RUC, the RUC of the reinforced matrix, and the 

constituents. The power of MSGMC lies in the ability to fully integrate 

micromechanics analysis for RUCs at various length scales. 

An important step is to character the RUC geometry at each length scale of 

analysis. For a material of interest, the dimensions of every subcell ( D , H , and

L ) for every multiphase material must be known. This is required to formulate 

the global/local relationship. In addition, each constituent must obey an elasto-

plastic constitutive model. Fig. 3.4 shows a typical discretization and link between 

two periodic microstructures. Since there can exist multiple length scales, a 

nomenclature system has been establish to avoid ambiguity for variables.  

refers to a specific subcell at a single length scale. To correctly refer to a subcell 

at a lower length scale, an index needs to precede it. For example,    
1 2

   

refers to a unique subcell where subscript 1 denotes the first localized scale and 

subscript 2 denotes the second localized scale. Since at any scale, each subcell can 

contain multiple smaller length scales, a subcell at any length scale can only by 

identified with the higher length scale indices preceding it (see Table 3.1).  
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Table 3.1 Nomenclature and Variables for MSGMC 

Global/Local Fields, where 
 

denotes field such as 
, , ,p C  

 

 
denotes global field 

 
 

1


denotes local field (down one length scale) 

 
   

1 2
 

denotes local field (down two length scales) 

 
     

1 2
...

n
  

denotes local field (down n number of length scales) 

 
   

refers to the local field of subcell      at the second length 

scale, superscripts dropped due to redundancy 

Geometric Properties, where _ denotes a single index for a subcell, i.e. 

, ,or    

_N denotes number of subcells in _ direction 

_ _ _, ,D H L  denotes dimensions of a subcell in 1,2 and 3 direction 

(respectively) 

 _
N

 denotes number of subcells in _ direction in one level down from 

subcell    

    ... _
N

    denotes number of subcells in _ direction in n levels 

down from subcell 
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Fig. 3.4 Example of MSGMC Repeating Unit Cell consisting of 3N  ,

4N  and 2N   with subcell 3,4,1 as a multiphase material  in an 

arbitrary coordinate system 

 

 

To generalize MSGMC, a three length scale analysis is presented 

(macro,meso, and micro). The macroscale is a multiphase composite that can be 

described as an RUC of dimensions D x H ,x L . Each subcell within the 

macroscale, otherwise known as a mesoscale subcell, can either be a multiphase 

material (i.e. composite material) or a single phase material (constituent). If it is a 

multiphase material, it has an RUC of dimensions 
 D
 

x  H
 

,x  L
 

. If it 

is a single phase material, it is represented by a constitutive model. Each subcell 

within a mesoscale RUC is a constituent material. The relationship between all 

length scales will be described below. 
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The macro and mesoscales both contain RUCs and the microscale only contains 

constituents. Assuming an elasto-plastic relationship, the governing constitutive 

law at the macroscale can be written: 

  IC     (3. 102) 

Where  is the stress tensor, C  is the stiffness matrix,  is the engineering strain 

tensors, and p is the plastic engineering strain tensor. The stress at the 

macroscale can also be determined through volume homogenization of the 

stresses at the mesoscale 

 
 

1 1 1

1
N NN

D H L
DHL

 


  
  

 
  

   
(3. 103) 

Similarly, the stiffness can be written in terms of the local mesoscale subcell 

stiffnesses and concentration matrices. 

 
   

1 1 1

1
N NN

C C A D H L
DHL

 
 

  
    

   
(3. 104) 

The plastic strain can written in terms of the plastic strain concentration matrix 

and mesoscale parameters. 
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(3. 105) 

 

This concludes all necessary governing equations at the macroscale. The total 

engineering strain tensor can be localized to any subcell from the globally applied 

strain and local plastic strains. 
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       I

sA D
  

     (3. 106) 

However, computation of the terms in Equations 25-27 depends on the mesoscale 

subcell properties. The stress (
 

 ), plastic strain (
 I 

 ), and stiffness (
 C


) are computed differently depending if it is a multiphase or single phase subcell. 

  single phaseIf    

         I
C

   
     (3. 107) 
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In addition, the multiphase subcell must also obey the governing constitutive law 

of  

         I
C

   
     (3. 112) 

 

Finally, the parameters at the microscale (constituents of the mesoscale RUC), 

can be determined. First, the localized strain is computed through: 

             I

sA D
       

     (3. 113) 

 

The stress, stiffness and plastic strain at the microscale are determined as follows: 

             I
C

       
     

(3. 114) 
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Through substitution, the stress for any microscale subcell can be written in terms 

of the globally applied strains and local plastic strains at every length scale. 
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(3. 116) 

There are four terms in the previous equations and the meaning of each term is 

easily recognized. The first two terms are localization terms from pervious length 

scales. The first showing the effect of the globally applied strain and the second 

illustrating the effect of plasticity from all the mesoscale subcells. The third term 

reflects the effects of plasticity from all the microscale subcells of a given 
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mesoscale subcell. The fourth term is the local plasticity of that subcell. This 

shows that the stresses at the microscale are fully coupled to the strains at all 

length scales and in addition coupled to all the stiffness matrices through the 

concentration matrices A  and D . Similarly the macroscale stress and stiffness 

can be written in terms of local fields.  
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To solve the numerical solution for the coupled set of multiscale equations 

a generalized forward Euler integration formulation for the MSGMC 

methodology is presented. MSGMC is broken down into two steps, an 

initialization procedure and incremental solution. The initialization procedure is 
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described in Fig. 3.5. This procedure involves determining the initial stiffness for 

each subcell (every length scale). The effective stiffness at every length scale is 

also determined through homogenization. The incremental solution is outlined in 

Fig. 3.6. The incremental procedure is a forward Euler scheme that uses the 

previous increments stiffness and inelastic strains to move forward. In each 

increment, using the previous stiffness and inelastic strains, the concentration 

matrices, A and D, are solved for then the local strain increments in each subcell 

are determined based on global applied loads. If the stiffness of the subcells 

remains unchanged, then the concentration matrices, A and D do not need to be 

recalculated, saving significant computation effort. At each length scale after 

homogenization, a check for convergence is critical to verify that the forward 

Euler step size is sufficiently small. Verification that Equations 13 and 15 and 

Equations 8 and 9 yield the same answer to tolerance is useful consideration. 

Verifying that the predicted global stress at the beginning of the increment is 

equivalent to the global stress at the end of the increment is also useful. Similarly, 

if a damage mechanics model is being employed verifying a scalar representative 

of the stiffness, such as the determinant, remains unchanged with tolerance at the 

beginning and end of the increment is also an indication of convergence.  
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Fig. 3.5 Initialization Flow Chart for MSGMC 
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Fig. 3.6 Incremental Flow Chart for MSGMC 
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3.6 Application to Textile/Braided Composites 

To apply MSGMC to modeling of textile and braided composites, the relevant 

length scales need to be identified and the material has to be characterized. The 

critical length scales can be seen in Fig. 3.1. These are identified as the micro, 

meso, and macroscales. At the microscale, the constituents namely the fiber and 

matrix are modeled for the constitutive response and failure. At the mesoscale, the 

fiber tow bundles, specifically the RUC for the fiber/matrix is modeled. Lastly at 

the macroscale, the weave architecture is modeled. A discretized problem for a 

plain weave composite is shown in Fig. 3.7. 

 

Fig. 3.7 MSGMC Applied to Textile Composites  
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3.6.1 Microscale 

The Multiscale Generalized Method of Cells (MSGMC) is used to 

represents the woven fabric composite starting with its constituent materials, i.e. 

the fiber (monofilament) and matrix progress up the various length scales. The 

microscale is the only length scale where explicit constitutive models are applied 

to the various phases (e.g. fiber and matrix). Stress states and tangent moduli for 

larger length scales are determined through the Generalized Method of Cells 

(GMC) triply-periodic homogenization procedure developed by Aboudi
3
. The 

monofilament fibers are modeled using a linear elastic relationship, i.e. Hooke’s 

Law, and the matrix material can be represented various constitutive models such 

as classical incremental plasticity based on a von Mises yield surface, 

viscoplasticity and damage mechanics.. 

3.6.2 Mesoscale 

The mesoscale is used to represent the period structure of a fiber tow. At 

the mesoscale, there are two significant architectural parameters: fiber packing 

and tow volume fraction. Both of these parameters govern the mesoscale subcell 

geometries. The response of the mesoscale is subject to these parameters as well 

as the material variation at the microscale. The continuous fiber tows are assumed 

to be represented by a doubly-periodic RUC of dimensions h by l consisting of 

constituents from the microscale. An example of such an RUC discretized for 

GMC is shown in Fig. 2.16, where the inner region (shown in grey) denotes the 

fiber tow and the outer region (shown in white) is the matrix. The RUC is 

discretized in such a manner that it is composed of Nβ × Nγ rectangular subcells, 
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with each subcell having dimensions hβ × lγ. From this point forward, superscripts 

with lowercase Greek letters denote a specific subcell at the microscale, 

superscripts of uppercase Greek letters denote a specific subcell at the macroscale 

and superscripts with lowercase Roman letters denotes macroscale variables. 

Fiber tow packing and volume fraction typically govern the architecture of the 

mesoscale RUC but must be in accordance with the previously described RUC 

microstructural parameters. The resulting stress in the fiber tow can be determined 

from the GMC homogenization process, where in GMC, the current stress and 

current tangent moduli of a particular fiber tow at a point are determined through 

a volume averaging integral over the repeating unit cell. This process is 

represented by the summation in the following equations, producing the first 

homogenization in the multiscale modeling framework. In these equations, σ 

denotes the Cauchy true stress, A denotes the strain concentration matrix, and C 

denotes the stiffness matrix
2,3

. The microscale subcell stresses and tangent moduli 

needed to complete the summation are determined through the applied 

constitutive models for each constituent based on their current strain state. The 

mesoscale strains, which are used as the boundary conditions for the GMC 

analysis, are determined from the through thickness (tt) homogenization at the 

macroscale. The subscripts tt in the concentration matrix and denote the 2
nd

 

portion of the two step homogenization process discussed later. 

3.6.3 Macroscale 

At the macroscale the RUC for the weave fabric is modeled. At this scale, 

the architecture is governed by the overall volume fraction, tow geometry (aspect 
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ratio, width and thickness), and overall fabric thickness, wherein the subcell 

“constituent” response is obviously dependent on the mesoscale and microscale 

responses. The weave requires a triply-periodic RUC representation, of size 

D×H×L and discretized into N
× N

× N
 parallelepiped subcells, with each 

subcell having dimensions D
× H

× L
. At this length scale, a two step 

homogenization procedure was employed to determine the stiffness and 

macroscale stresses. This is to overcome the lack of shear coupling inherent to the 

GMC formulation
5
. The first step involves a through thickness homogenization 

and the second step is an in-plane homogenization, where subscripts tt and ip 

denote through thickness and in-plane respectively. Details for the subcell 

geometry and RUC information can be found in Ref. 5 and 6. 

3.7 Future Work 

The research presented in this chapter was based off of first order 

displacement field assumptions, which result in first order strain and stress fields. 

Applying higher order displacement fields will result in a higher fidelity analysis 

and improve the accuracy of the model. There is a significant amount of research 

necessary to derive the proper relations and bridging between length scales for 

higher order theories, particularly in placing the appropriate boundary conditions. 

Unfortunately, one disadvantage to higher order techniques is the introduction of 

mesh or discretization dependency that is not present with first order techniques. 

Secondly, with a higher order formulation allows the use of isoparametric 

subvolumes as opposed to parallelpiped subvolumes with appropriate mapping 
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(see Fig. 3.7). This will allow an even further refined tow architecture to be 

captured. 
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Fig. 3.7 Isoparametric Mapping  

 Lastly, nonlinear geometry effects, such as kinking and straightening of the 

fiber tow bundles are important for the accurate modeling of compression and 

high deformation.  
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Chapter 4 

4. Modeling Polymeric Triaxially Braided Composites 

4.1. Introduction 

Triaxially braided composites (TriBCs) have been of interest for many years 

as replacements for metallic materials. A distinct design advantage of TriBCs is 

their ability to be tailored from quasi-isotropic to fully anisotropic material 

behavior. TriBCs have also shown a greater delamination resistance when 

compared to equivalent unidirectional laminates. There are numerous advantages 

for TriBCs, but a key disadvantage is the predictive challenge associated with the 

mechanical response of this material. This disadvantage initiates for two reasons: 

first, the repeating unit cell (RUC) microstructure is complex when considering 

application of traditional micromechanical methods, which tend to approximate 

composite microstructures; second, the microstructural length scale is often not 

insignificant when compared to that of the overall structure and thus the analysis 

is often thought of as a structural analysis, more so than a micromechanical 

analysis. 

4.2. Effective Elastic Properties 

A simple application of this multiscale methodology is the prediction of 

effective elastic properties at the macroscale. To validate this methodology, 

predictive results are compared to experimental and finite-element data for a 

T700/E862 material system with 56% fiber volume fraction. Using the multiscale 

modeling methodology, the elastic properties for the macroscale RUC are 

predicted for a varying volume fraction and braid angle and compared with 
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limited experimental and finite-element results (Littell 2008). For the mesoscale 

RUC, the generalized method of cells RUC, which is a 2 × 2 RUC, was applied. 

The linear elastic constituent properties used for the analysis are presented in 

Table 4.1. The architectural properties can be found in Table 4.2. Results are also 

compared to classical lamination theory for reference. The predicted transverse 

Young’s, in-plane shear, and axial Young’s moduli of the 56% triaxially braided 

T700/E862 composite, as a function of braid angle and fiber volume fraction, are 

plotted in Fig. 4.1. The two RUCs bounded the predicted moduli for both axial 

and transverse moduli. The simplified RUC resulted in slightly stiffer properties, 

whereas the refined RUC presented slightly compliant properties. The coarse and 

refined models once again bounded the shear modulus results. Digital image 

correlation showed nonuniform state of shear strain in the gauge section. Due to 

the inherently large RUC size of the TriBC, there was difficulty in measuring the 

macroscale properties. Future tubular test specimens are therefore planned. 

Results show good correlation to both the experimental and finite-element results. 

In most cases, the simplified RUC and CLT followed similar trends. The CLT 

results are in good agreement with the multiscale GMC results for the transverse 

modulus for variation of braid angle, but the shear and axial moduli differ greatly. 

This is due in part to the limitations of using CLT directly without modification. 

Table 4.1 Constituent Elastic Properties of T700/E862 Material System 

 

Axial 

Modulus 

(GPa) 

Transverse 

Modulus 

(GPa) 

Axial 

Poisson’s 

Ratio 

Transverse 

Poisson’s 

Ratio 

Shear 

Modulus 

(GPa) 

T700 230 15 0.2 0.2 15 

E862 2.7 2.7 0.35 0.35 1.0 
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When using CLT, the thicknesses of equivalent laminates must be varied to 

enforce that the overall fiber volume fraction in each direction is enforced. For a 

60° braid, the volume fractions are equal transversally and axially, so CLT works 

well directly. For other brand angles this is not the case and must be accounted 

for. 

 
a) Transverse Modulus Versus Braid Angle 

 
b) Transverse Modulus Volume Fraction 

Fig. 4.1 Elastic properties varied with braid angle and fiber volume fraction: 
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c) Shear Modulus Versus Braid Angle 

 
d) Shear Modulus Versus Volume Fraction 

 

Fig. 4.1 (contd.) Elastic properties varied with braid angle and fiber volume 

fraction: 
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e) Axial Modulus Versus Braid Angle 

 
f) Axial Modulus Versus Volume Fraction 

 

Fig. 4.1 (contd.) Elastic properties varied with braid angle and fiber volume 

fraction: 

 

Lastly, the local fields for the refined RUC can be determined through 

MSGMC. For the case of transverse loads the homogenized through thickness 

strains along the loading direction are contour plotted. A reference RUC is plotted 

beside the strain contour plot for comparison purposes. The resin rich pocket 
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regions (red color in the contour plot) show high strain concentrations and 

similarly the resign rich regions between parallel braid tows also show a high 

strain concentration then the average field. This capability allows for accurate 

prediction of architecture dependent damage from various length scales. 

 

Fig. 4.2 Local Field Strain Distribution within a Refined RUC for T700/PR520 

Triaxial Braided Composite 

4.3. Classical Plasticity With Fiber Failure 

Although predictions of elasticity constants are useful for the engineering 

community, it is more useful to predict the entire stress strain curve. The 

governing mechanism for nonlinearity is the polymer matrix. The polymer 

material experiences development of inelastic strain at all length scales and as 
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such the microscale constitutive model for the polymer should reflect that.  To 

capture the inelastic response of the polymer, the classical J2 incremental 

plasticity model with a nonlinear strain hardening law was employed. The 

particular formulation for this model however is derived in strain space was taken 

from (Bednarcyk 2004) and shown to be equivalent to the well known Radial 

Return technique. The yield criterion is given by 

  
3

p

eqf
G

 
   

(4. 1) 

where 
eq is the equivalent plastic strain defined by 

2

3
eq ij ije e   and 

/ 3ij ij kke     ,  p  is the hardening law which is a function of the equivalent 

plastic strain, and G is the shear modulus. The strain hardening law is given by  
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(4. 2) 

where 
Y is the yield stress and H and A are material parameters. The overall 

failure of the composite is governed by the fiber failure and a maximum strain 

failure criterion was used to simulate this (Eq. 4.2).  

 
11

f f

Af X   (4. 3) 

The strain failure of the fiber was assumed to be 2.1% based on manufacturer 

specification.  
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The MSGMC analysis results are validated with experimental data for 

tension and shear tests. Table 4.2 lists the architectural parameters and Table 4.3 

and 4.4 lists the material parameters used in the analysis. TriBCs are not truly 

quasi-isotropic and exhibit some orthotropy, thus it is necessary to investigate  

both the axial and transverse response. The predictions of the overall composite 

response, shown in Fig. 4.2, show very good correlation in the axial response with 

slight under and over predicted failure in the shear and transverse response, 

respectively. This result is important as it demonstrates that analyzing multiple 

length scales with nonlinearity and failure can provide accurate predictive 

Table 4.2 Triaxially Braided Composite Parameters 

Parameter Value 

fV  0.56 

0ofV
,

fV


 0.80 

0ow  ,
 
w   3.5mm 

  60 degrees 

0
t

 0.14mm 

t   
0.07mm 

 

Table 4.3 Constituent Elastic Properties of T700/PR520 Material System 

 

 Axial 

Modulus 

(GPa) 

Transverse 

Modulus 

(GPa) 

Axial 

Poisson’s 

Ratio 

Transverse 

Poisson’s 

Ratio 

Shear 

Modulus 

(GPa) 

T700 230 15 0.2 0.2 15 

PR520 3.54 3.54 0.38 0.38 1.28 
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responses of complex architectures.  Plastic strain versus total strain is shown in 

Fig. 4.3. It can be seen that the shear loading produces most plastic strain 

followed by transverse and then axial loading. It should also be noted that under 

transverse loading, the rate of plastic strain is much higher than the other two 

loading conditions. 

 

 

 

 

Fig. 4.3 Inelastic Triaxially Braided Composite Stress Strain Curve 
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Fig. 4.3 (contd.) Inelastic Triaxially Braided Composite Stress Strain Curve 

 

Fig. 4.4 Plastic Strain Versus Global Strain in Triaxially Braided Composite  
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One of the benefits of MSGMC is that it allows not only for the global 

predictive response shown previously, it provides insight to the mechanics behind 

the response. For example, under transverse loading, the composite stress of the 

RUC is shown in Fig. 4.3, but the local stresses of the tows (in local coordinates) 

can be computed and are shown in Fig. 4.5.  

 

Fig. 4.5 TriBC Mesoscale Stress Distribution under Transverse Loading 

Table 4.3 

Constituent Elastic Properties of  T700/PR520 Material System 

 

Table 4.4 Plasticity Parameters for PR520 Material 

 
Y (MPa) H (MPa) A 

PR520 100 3333 0.1 
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Fig. 4.6 TriBC Fiber Stresses at the Microscale under Transverse Loading 

Furthermore, the axial stress in just the fiber can be plotted for each of the tows 

against the global strain shown in Fig. 4.6. The matrix stresses at the microscale 

were significantly less than those of the fiber. We can see that under transverse 

loading, the stresses in the braid tows far exceed that of the overall composite, 

however the axial tows do not carry a significant portion of the load. 

Another important observation is the normalization of the stress in the tows 

with respect to the stress in the composite RUC, shown in Fig. 4.7. This allows an 

insight as to the proportion of the load being distributed internally in the 

composite RUC. From this plot is where the non linearity clearly becomes 

prevalent. In both braided tows, the axial stress begins to carry a higher 

percentage of the load with increasing strain. Subsequently, the stress in the axial 

tow must drop to maintain equilibrium. This is in an important result as it shows 
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that the stress distribution and load carrying response of the tows is not uniform 

with applied strain. 

 

Fig. 4.7 TriBC Mesoscale Stress Ratio under Transverse Loading 

The same results can be reproduced for both the axial and shear loadings as 

shown in Fig. 4.8 and Fig. 4.9, respectively. In the case of axial loading, it is clear 

that the axially aligned tows carry nearly all the load and the stress in the braided 

tows are close to zero. Furthermore, the axial fiber within the tows also carries the 

majority of this load. The opposite can be seen in the case of shear loading, where 

the braided tows carry the load and the axial tow is in a low stress state. 
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Fig. 4.8 TriBC Mesoscale Stress Distribution under Axial Loading 

 

Fig. 4.9 TriBC Mesoscale Stress Distribution under Shear Loading 

4.4. Viscoplastic Strain Rate Dependent Response with Constituent Failure 

 The viscoplasticity model developed by Goldberg, will be employed as it 

accurately captures the response of the polymer materials. A small modification to 

the model will be employed to enhance the accuracy in capturing the compressive  
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response of the material. The evolution of the state variable  , which controls the 

hydrostatic effects, was originally assumed to evolve in the same fashion as the 

Bodner Partom state variable Z , see Eqs 4.4 and 4.5. By using this evolution law 

it is difficult to characterize the response for tension and compression as the stress 

potential will always be small in compression. By keeping  constant the 

response can be accurately captured in compression. The modifications to the 

state variable evolution can be seen in the following equations. 

  1

I

eq e     (4. 4) 

 
10      (4. 5) 

The MSGMC analysis results are validated with experimental data for a 

T700/PR520 material system for tension and shear tests. Table 4.5 shows the key 

viscoplasticity parameters used in the analysis, while the architectural parameters 

can be found in Table 4.2 and elasticity parameters in Table 4.3. It is critical to 

accurately capture the nonlinear rate dependent response of the resin at the 

microscale, because its response governs the nonlinear response that the 

composite displays. The modified parameters for the PR520 resin system are 

shown in Table 4.5. As stated previously, the constitutive model presented by 

Goldberg was modified so that the state variable alpha does not evolve and then 

Table 4.5 Viscoplasticity Properties of PR520 Resin System 

 

 
0D (1/s)

 n  
0Z

(MPa)
 

1Z

(MPa) 

  

PR520 61 10x  0.93 396.09 753.82 0.0937 
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recharactertized to better capture the compressive response of the resin. The 

following three figures showed the uniaxial response of the material in tension, 

compression, and shear. The experimental results were taken from Goldberg. The 

shear response is not dependent on the variable   because it acts only on the 

hydrostatic portion of the stress tensor, which is zero under pure shear. However, 

the compressive response, which was previously linear with no yielding or 

accumulation of plastic strain, now exhibits highly nonlinear behavior that is 

comparable to experimental data. 

TriBCs are not truly quasi-isotropic and exhibit some orthotropy, thus it is 

necessary to investigate both the axial and transverse response. Experimental data 

was available for three strain rates for axial and transverse loading. These are 

labeled as high, medium and low strain rates. For the axial direction they were 

5.2e-4/s, 6.4e-5/s, and 7.7e-6/s. For the transverse direction they were 5.12e-4/s, 

8.00e-5/s, and 8.57e-6/s The predictions of the overall composite response, shown 

in Fig. 4.10 and Fig. 4.11, show very good correlation with the overlain 

experimental data in the axial response with slight under and over predicted 

failure in the shear and transverse response, respectively. This result is important 

as it demonstrates that analyzing multiple length scales with nonlinearity and 

failure can provide accurate predictive responses of complex architectures.  The 

transverse experimental specimens show high nonlinearity, but this is due to the 

use of a straight sided specimen coupon. This coupon causes premature failure at 

the first ungripped fiber tow. This causes an artificial nonlinearity that is due to 

coupon structure not the material behavior, however a new specimen design has 
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been implemented but results are unavailable. Since the design and 

implementation of a test specimen that accurately captures a pure uniaxial 

transverse load is difficult and has not been fully implemented, the results from 

the multiscale model are assumed to better represent the true transverse response. 

 

Fig. 4.10 TriBC Axial Tensile Constitutive Response Plotted Against 

Experimental Data 

 

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

0.0000 0.0050 0.0100 0.0150 0.0200 0.0250

S
tr

e
ss

 (
p

si
)

Strain (in/in)

Axial Tensile Response

Experimental Low

Experimental Medium

Experimental High

Predicted Low

Predicted Medium

Predicted High



  108 

 

Fig. 4.11 TriBC Transverse Tensile Constitutive Response Plotted Against 

Experimental Data 

Since the experimental data was limited to relatively low strain rates, several 

higher strain rate cases were carried out in order to study the rate effects. The 

strain rates seen in the experimental data are considered relatively slow, and at 

those rates, little rate dependence is seen in the resin itself. In Figs. 4.12-4.14 the 

strain rate dependent behavior is shown for various levels of strain rates listed in 

the legends. The results are presented for axial, transverse, and shear loading. 

Although the experimental results show little strain rate dependence, the predicted 
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been explored is the rate dependent failure mechanisms of the polymer. Although 

overall failure is clearly governed by the failure of the fiber, the response in the 

nonloading directions can be greatly affected by the failure response of the 

polymer itself. Future work will be focused on implementing advanced and rate 

dependent failure criteria for polymers. 

 
Fig. 4.12 TriBC Aixal Tensile Constitutive Predicted Response 

 
 

Fig. 4.13 TriBC Transverse Tensile Constitutive Predicted Response 
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Fig. 4.14 TriBC Shear Constitutive Predicted Response 

 

4.5. Future Work 

Many important phenomenon for modeling triaxially braided composites were 

reported here including elasticity, plasticity, viscoplasticity, and failure. However, 

there are still significant mechanisms that have not been included. For example, 

tow delamination and fiber/matrix delamination are critical under high speed 

impact loadings. Additionally, modeling the failure modes and damage 

mechanisms of the polymer can help improve the accuracy of shear and 

compression loadings. 
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Chapter 5 

5. Modeling Polymeric Woven Composites 

5.1. Introduction 

Woven composites are currently widely used due to their reduce delamination 

tendencies relative to their thickness. These materials are preferable for their 

direct replacement for the commonly used cross ply lamina/laminates. Even 

though woven composites are mainstream, commonplace analysis is limited due 

to the complex in-plane shear response, which is a function of both the material 

and geometric nonlinearity. It was previously shown that the triaxial braided 

composites did not exhibit severe rate dependence, however due to the high 

nonlinearity the strain rate dependent effects are significant in shear loading. 

Lastly, woven composites are readily available in a plethora of configurations 

controlling architectural parameters, many of which are not accounted for in 

traditional analysis, and the effect of changing these parameters is a critical 

interest in aerospace applications. 

5.2. Elastic Properties 

To validate MSGMC for woven polymer composites, first the elastic 

predictions must be valid and accurate. For the test case here is a comparison 

drawn between an explicitly modeled finite element technique (Kollegal 2000) 

and experimental results (Blackketter 1995).  Here the shear modulus and 

Young’s modulus are compared for the case of a AS-4/3501-6 60% volume 

fraction plain weave composite.  The material properties are summarized in Table 

5.2. The geometric parameters for the test case are summarized in Table 5.1. The 
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comparison between the two techniques and experimental data, shown in Fig. 5.1 

and Fig. 5.2, shows a minute difference between them. 

.  

Fig. 5.1 Predict and Experiment Modulus for 60% AS-4/3501-6 Plain Weave 

Composite 
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Table 5.2 Constituent Elastic Properties of AS-4/3501-6 Material System 

 

 Axial 

Modulus 

(GPa) 

Transverse 

Modulus 

(GPa) 

Axial 

Poisson’s 

Ratio 

Transverse 

Poisson’s 

Ratio 

Shear 

Modulus 

(GPa) 

AS-4 221.0 13.8 0.2 0.25 13.8 

3501-6 4.4 4.4 0.34 0.34 1.62 

 

Table 5.1 AS-4/3501-6 Plain Weave Composite Geometric Parameters 

 

Parameter Value 

fV  0.60 

towfV  0.70 

w  
 
 1mm 

t  0.5mm 
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Fig. 5.2 Predict and Experiment Modulus for 60% AS-4/3501-6 Plain Weave 

Composite 
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Fig. 5.3 Prescribed Coordinate System for Woven Composites 

combination of both width and thickness change. For simplicity, the constant 

thickness or constant width assumptions are made for various volume fractions. 

Both plain weave and 5 harness satin weaves were simulated for volume fractions 

varying between 5-60%. The material parameters for this analysis are shown in 

Table 5.3. A tow width of 1.69 mm was used while the tow volume fraction and 

thickness were changed accordingly. The variation for the in-plane parameters 

show nonlinear trends as expected and the differences between weaves are more 

pronounced at higher volume fractions. This is due to the fact at lower volume 

fractions, the material response is more matrix dominated and less architecture 

dependent. An important observation is that the constant width and constant 

Table 5.3 Constituent Elastic Properties of Graphite/Epoxy Material System 

 

 Axial 

Modulus 

(GPa) 

Transverse 

Modulus 

(GPa) 

Axial 

Poisson’s 

Ratio 

Transverse 

Poisson’s 

Ratio 

Shear 

Modulus 

(GPa) 

Graphite 230.0 15.0 0.2 0.2 15.0 

Epoxy 3.1 3.1 0.38 0.38 1.12 

 

3 

2 
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thickness trends exhibit different convexity for the in-plane modulus variations, 

while the Poisson’s ratio and shear modulus are similar.  

a)  

b)   

Fig. 5.4 Volume Fraction Variation for Constant Thickness RUC a) In-Plane 

Modulus b) In-Plane Shear Modulus c) In-Plane Poisson’s Ratio  
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c)  

Fig. 5.4 (contd.) Volume Fraction Variation for Constant Thickness RUC a) In-

Plane Modulus b) In-Plane Shear Modulus c) In-Plane Poisson’s Ratio 

  

a)   

Fig. 5.5 Volume Fraction Variation for Constant Width RUC a) In-Plane Modulus 

b) In-Plane Shear Modulus c) In-Plane Poisson’s Ratio 
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b)   

c)  

Fig. 5.5 (contd.) Volume Fraction Variation for Constant Width RUC a) In-Plane 

Modulus b) In-Plane Shear Modulus c) In-Plane Poisson’s Ratio 

 

5.3. Modeling Plain Weave Composites with Ramberg Osgood Deformation 

Plasticity 

Since it has already been established that MSGMC is highly capable of 

predicting the components of the elastic stiffness matrix, the next step is to predict 

the entire stress strain curve including failure. In order to capture the nonlinear 
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response of the matrix material and to generate a fair comparison with other 

approaches, a Ramberg-Osgood type deformation plasticity model is employed. 

This type of model is identical the work of (Tabiei 2004), which is the most 

similar micromechanical approach to MSGMC. However, the particular 

implemented presented in the works of Tabiei is slightly unstable and its approach 

is more akin to a scalar damage model. Also the model is inherently unstable and 

requires a small time step to converge. To improve stability, the model is changed 

to a deformation plasticity type model with the assumption of all nonlinear being 

related to plastic strain. This assumption does not change the end result of the 

constitutive model, but allows for a simpler implementation. In Tabiei’s variation 

of the Ramberg-Osgood model, it assumes that the shear nonlinear can be 

modeled by the following relationship 

 
  0

1 1/

01

p
p

G

G

S


 





  
  
   

 
(5. 1) 

where   is the shear stress,  is the shear strain, 
0G is the initial shear modulus, S  

is the maximum shear strength, and p is a material constant governing the amount 

of curvature in the stress strain curve. A modification into a deformation plasticity 

can relate the plastic shear strain to the total shear strain by the following 

relationship 

 1/

1 1

p
p

p G

S


 

        
     

. 

(5. 2) 

and the shear stress can now be calculated by 
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  pG    . (5. 3) 

The resulting formulation allows the elastic stiffness matrix to remain unchanged 

and allow for more stable convergence.  

 To validate the model, the overall stress strain curves for tension and shear are 

plotted against several other techniques and experimental data. The material 

system can be described by Table 5.2 and Table 5.1 along with the nonlinear 

properties of the matrix ( 2.34p   and 89S  MPa). The fiber failure strength 

was taken to be 2.4 GPa and the failure criteria of Eq. 4.3 was used. The overall 

result curves are shown in Fig. 5.6 below. 

a)  

b)  

Fig. 5.6 AS-4/3501 60% Volume Fraction Plain Weave Composite a) Tensile 

Stress-Strain Curve b) Shear Stress-Strain Curve  
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 The global stress-strain curves are compared to experimental results 

(Blackketter 1995), finite element analysis (Kollegal 2000), micromechanics 

(Tabiei 2004), and analytical methods (Naik 1995). From the graphs, it is seen 

that MSGMC performs well when compared to the other methods and techniques.  

5.4.Viscoplastic Strain Rate Dependent Response with Failure    

Although plasticity models are useful in solving static problems, modeling the 

strain rate dependent response is a critical issue in dynamic problems. Orthogonal 

weaves show a strong rate dependent response in shear loading where the 

nonlinear matrix response is governing. To capture the rate-dependent response of 

the material parameters and governing equations in Section 4.4 were used. To 

demonstrate the rate dependent effects, three different strain rate cases were 

evaluated: 1e-5/s, 1/s and 1e3/s. These were chosen to reflect realistic loading 

conditions. Only shear loading was considered because other loadings did not 

exhibit strong rate dependent effects. 

 
Fig. 5.7 Strain Rate Dependent Shear Response of AS-4/3501-6 60% Volume 

Fraction Plain weave Composite 
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Fig. 5.7 shows the predicted curves and it is clear that this is a critical 

phenomena. However, a rate dependent failure criteria for the polymer matrix is 

necessary to fully capture the response. This will allow the strength levels to be 

accurately predicted. Future research will hopefully quantify this constituent 

response and improve current modeling capabilities. MSGMC has the capability 

to compute the local field distributions at several length scales. For the case of 

shear loading, Fig. 5.8 shows the local shear stress (
23 ) distribution in the plain 

weave at the initial stage and at 8% shear strain, while Fig. 5.9 shows the local 

plastic shear strain (
23

p ) distribution.  

a)  
Fig. 5.8 Local Shear Stress Distribution in AS-4/3501-6 60% Volume Fraction 

Plain Weave Composite at 1e-5/s Strain Rate a) .02% Strain b) 4% Strain 
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b)  

Fig. 5.8 (contd.) Local Shear Stress Distribution in AS-4/3501-6 60% Volume 

Fraction Plain Weave Composite at 1e-5/s Strain Rate a) .02% Strain b) 4% Strain 

 

 The local stress distributions show the inherent nonlinearity in the polymer 

response. Load redistribution can be seen by the color changing between the two 

contour plots. The matrix pockets changed from a yellow to a yellow-green color, 

indicating loss in load carrying capability due to plasticity. 

 
Fig. 5.9 Local Plastic Shear Strain Distribution in AS-4/3501-6 60% Volume 

Fraction Plain Weave Composite at 4% Global Strain 
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 Examining these figures allows one to understand the local load carrying 

paths and the materials responsible for the nonlinear behavior. The undulating 

tows and the interweave matrix carry the majority of the shear load in the 

composite and thus are responsible for the overall behavior. A five harness satin 

variant of this weave was also simulated. The local fields for this weave exhibit 

similarities to that of the plain weave. The distribution is fairly consistent between 

the weave types. 

 
Fig. 5.10 AS-4/3501 60% Volume Fraction 5 Harness Satin Weave Composite a) 

Tensile Stress-Strain Curve b) Shear Stress-Strain Curve 

 



  124 

a)  

b)  

Fig. 5.11 Local Shear Stress Distribution in AS-4/3501-6 60% Volume Fraction 

Five Harness Satin Weave Composite a) b) 
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Fig. 5.12 Local Plastic Shear Strain Distribution in AS-4/3501-6 60% Volume 

Fraction Five Harness Satin Weave Composite 

 

5.5. Parametric Variation 

The previous sections of this report focused on modeling the macroscale 

response of a weave RUC. The macroscale result is dependent on several 

architectural and material parameters and can exhibit significant variation 

depending on the statistical distributions of these parameters. In a real structure, 

the RUC cannot be idealized to a perfect geometry due to manufacturing 

variations. An RVE of several RUCs is necessary to capture the response due to 

material variation, therefore another length scale is added, the structural scale. 

The structural length scale refers to the component being analyzed, i.e., an engine 

fan casing or in this case a region within the gage length of a typical experimental 

test coupon – unaffected by edge effects and thus idealized by a representative 

volume element (RVE) consisting of several macroscale woven repeating unit 

cells formed from various combinations of architectural effects. The macroscale 

weave refers to the RUC of the weave, for a plain and 5-harness satin fabric. The 
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mesoscale represents the RUC of the fiber tow, this represents a bundle of fibers 

(typically 3k, 6k or 12k for polymeric matrix composites). The smallest length 

scale is the microscale, which represents the fundamental constituent materials, 

such as the monofilament fiber and matrix itself. 

Two scenarios were investigated at the structural scale: 1) an RUC comprised 

of 3x3 macroscale RUCs and 2) an RUC comprised of 6x6 macroscale RUCs. 

This was performed in order to investigate the influence of discretization (size) 

effect between the macro and structural length scales, since at the structural scale, 

see Fig. 5.13, macroscale RUC representing each subcell is randomly chosen. 

There are several “microstructural” parameters at the meso, macro, and structural 

level required to fully define the descritzed subcell geometries. At the mesoscale, 

both tow volume fraction and tow packing are required, while at the macroscale, 

weave architecture, weave volume fraction, tow aspect ratio and ply nesting are 

required. At the structural level, the spacial distribution of the macroscale RUCs 

are required, i.e., uniform – each subcell is associated with the same macroscale 

RUC or random – subcells are associated with a uniform distribution of 

macroscale RUCs.  It has been of recent interest to study the effects of these 

parameters and understand what the driving factors for both elastic and inelastic 

response are.  
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Fig. 5.13 Multiscale Framework for Parametric Variation 
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To effectively study the effects of the architectural parameters, the response of the 

woven composite was studied at two length scales: macro and structural. For this 

analysis an AS-4/3501-6 material system with an overall fiber volume fraction of 

60% was used. The properties of the constituent system are shown below in Table 

5.3. There are three plasticity parameters 
Y , a, and H. 

Y  is the yield strength of 

the material; a, is the exponential hardening coefficient, and H is the post yield 

modulus (see section 4.2). To study the effects of architectural and material 

variation on the macroscale response, a full factorial set of numerical simulations 

were conducted. The parameters varied are shown in Table 5.5 and are depicted in 

Fig. 5.13. The three architectural parameters varied for tow volume fraction, tow 

aspect ratio, and fiber packing. All other parameters in the analysis were kept 

constant. The tow volume fraction and fiber packing are both considered a 

mesoscale effect because their geometrical properties are involved in the 

Table 5.4 Constituent Elastic Properties of AS-4/3501-6 Material System for 

Plasticity 

 
EA 

(GPa) 

ET 

(GPa) 
vA vT 

GA 

(GPa) 

Y  

(MPa) 
A 

H 

(GPa) 

AS-4 225.0 15.0 0.2 0.2 15.0 N/A N/A N/A 

3501-6 4.2 4.2 0.34 0.34 1.56 71 100 1.5 

 

Table 5.5 Parameters Varied For Parametric Analysis 

Microstructural 

Parameter 
Relevant Length Scale Values 

Tow Volume Fraction 

 tfV  
Meso 0.62,0.65,0.70 

Tow Packing Meso Hexagonal, Square 

Tow Aspect Ratio  AR  Macro 9,18,36 
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mesoscale concentration matrix (Eq. 2). The tow aspect ratio is considered a 

macroscale property because it is taken into account in the macroscale 

concentration matrices. The tow volume was varied over the range of 0.62, 0.65, 

or 0.70. These three values were chosen based of common experimental values 

for polymer matrix composites. Tow aspect ratio was chosen to be 9, 18 and 36. A 

value of 9 is typical of ceramic matrix composites, 18 is typical of polymer matrix 

composites, and 36 was chosen as an upper bound. Two different fiber packings 

were used, square and hexagonal, as both exhibit different response. Although 

most polymer matrix composites exhibit random packing, square and hexagonal  

 
Fig. 5.14 Typical Macroscale Deformation Response, given a tow volume fraction 

of 65%, hexagonal fiber packing within a given tow, and varying the tow aspect 

ratio from 9 to 36 

are both approximations of this. 

The full factorial simulations were run for both the tension and shear response 

and was also performed for two macroscale weave RUCs; a plain and 5HS weave. 

The range for the parameters were chosen such that they represent the typical 

variation in a polymer matrix composite, future work will allow for the 

investigation of stochastic variables and other composite systems such as metallic 

and ceramic matrix composites where the properties mismatch is significantly less 
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than for PMCs. There were two types of fiber packing considered within the tows; 

square and hexagonal. The tow aspect ratio is defined as the width per thickness, 

as shown in Fig. 5.13. The full factorial simulations for both responses and weave 

types resulted in a total of 72 cases analyzed. In each of these cases, the overall 

volume fraction and material system was kept constant so that results are 

comparable. In each case, two structural features were investigated, the elastic 

modulus and strain energy (area under the stress-strain curve) -which enables 

inelasticity effects to be considered.  

 

  

  
Fig. 5.15 Macroscale Tensile (bottom row) and Shear (top row), for Plain (left 
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row) and 5HS (right row) Response for All Architectural Variations. 

 

The results of the macroscale analyses are presented in Table 5.6. The overall 

response for each case is plotted in the Appendix, with typical stress vs. strain 

response plots shown in Fig. 5.14 and all responses overlaid for both weave types 

shown in Fig. 5.15. It is apparent that there is a significant amount of variation at 

the macroscale. From the graphs in the Appendix some conclusions can be readily 

drawn. Increasing the tow aspect ratio will increase both modulus and strain 

energy. Decreasing tow volume fraction has the same effect as increasing tow 

 

b

 

 

 

Fig. 5.16 Structural Scale Shear (top row) and Tensile (bottom row) Response 

Cases (for 3x3 RUC) given a Plain (left row) and 5HS (right row) weave. 
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Fig. 5.17 Structural Scale Tensile Response (for 6x6 RUC). 

aspect ratio, increase in modulus and strain energy. The hexagonal RUC at the 

mesoscale was more compliant and exhibited more plasticity than the square RUC 

for equivalent volume fractions. The tensile response was also more sensitive to 

changes than the shear response, as expected. The results show up to three times 

the standard deviation in tensile response when compared to shear. It is clear that 

there are coupling effects also present, so it was necessary investigate this further 

with an analysis of variance (ANOVA) was performed using Design Expert
7
 

software product. The p-value results are presented in Table 5.7. A p-value 

represents the probability that the effect determined from the ANOVA occurred 

due to noise. Typically a p-value of less than 0.10 indicates a significant effect, 

assume a 95% confidence interval. The ANOVA results show that typically these 

architectural effects do not influence significantly the response because of vary 

large p-values (much greater than 0.10). The most notable effect was seen in the 

interaction of the fiber packing and tow volume fraction. This was present in the 

plain weave tensile response cases. Clearly, the results at the macroscale indicate 
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that several of the meso-structural architectural effects are significant and must be 

considered if the macroscale is the final length scale in the analysis. 

Similarly, the influence of microscale parameters were examined by holding 

fixed the architectural effects (square packing with a 70% tow fiber volume 

fraction and an aspect ratio of 18) and varying the elastic properties of the matrix 

and fiber by ±10%. Then inelastic properties were kept constant. Here, results for 

both the tensile and shear response are shown in Fig. 5.18, wherein very little 

variation at the macroscale is observed, which is in contrast to the previous 

significant influence of architectural effects. This will most likely not be the case 

for both ceramic matrix composites or metal matrix composites, as the mismatch 

between constituent materials is significantly less (by approximately a factor of 

ten) then in the case of a PMC material systems 
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Table 5.6 Macroscale Results of Parameter Study for AS-4/3501-6 Plain Weave 

   
Plain Weave 5HS Weave 

Packing 

Aspect 

Ratio 

Tow Volume 

Fraction 

Longitudinal 

Modulus 

(GPa) 

Shear 

Modulus 

(Gpa) 

Long 

Strain 

Energy 

(MPa) 

Shear 

Strain 

Energy 

(MPa) 

Longitudinal 

Modulus 

(GPa) 

Shear 

Modulus 

(Gpa) 

Long 

Strain 

Energy 

(MPa) 

Shear 

Strain 

Energy 

(MPa) 

Hexagonal 18 0.65 55.32 4.64 9.19 7.86 42.78 4.41 7.63 7.44 

Square 36 0.7 46.13 4.20 8.09 7.32 52.83 4.36 9.63 7.60 

Hexagonal 36 0.65 51.65 4.30 8.98 7.51 57.86 4.12 10.73 7.32 

Square 9 0.65 61.43 4.37 10.99 7.66 58.40 4.25 11.13 7.54 

Square 18 0.65 66.03 4.33 12.50 7.69 58.49 4.14 10.70 7.35 

Hexagonal 9 0.7 66.46 4.34 12.56 7.71 59.11 4.27 11.18 7.58 

Hexagonal 18 0.7 67.35 4.21 12.45 7.49 60.95 4.18 11.18 7.42 

Square 9 0.62 67.91 4.35 12.87 7.74 61.68 4.32 11.62 7.67 

Hexagonal 9 0.65 62.28 4.36 10.93 7.65 62.54 4.43 11.57 7.75 

Hexagonal 9 0.62 58.48 4.32 9.96 7.57 63.16 4.42 11.62 7.74 

Square 36 0.65 41.15 4.50 6.86 7.58 64.17 4.70 11.41 7.99 

Hexagonal 36 0.62 56.66 4.53 10.22 7.70 65.26 4.59 12.19 7.81 

Hexagonal 36 0.7 65.53 4.18 12.10 7.44 65.92 4.19 12.14 7.46 

Square 36 0.62 66.10 4.71 11.86 8.01 67.11 4.60 12.55 7.83 

Square 9 0.7 59.30 4.38 10.80 7.66 67.85 4.39 12.43 7.71 

Hexagonal 18 0.62 47.04 4.25 8.63 7.40 68.55 4.45 12.98 7.81 

Square 18 0.7 54.33 4.65 9.27 7.88 70.21 4.73 13.10 8.04 

Square 18 0.62 56.07 4.55 10.15 7.72 70.78 4.61 13.60 7.86 
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Table 5.7 Macroscale P-Value Results for Design of Experiment Study on AS-4/3501-6 Plain Weave Composite System 

    
P-value 

   

 

  Plain     5HS   

 

Longitudinal 

Modulus 

Longitudinal 

Strain 

Energy 

Shear 

Modulus 

Shear 

Strain 

Energy 

Longitudinal 

Modulus 

Longitudinal 

Strain 

Energy 

Shear 

Modulus 

Shear 

Strain 

Energy 

A-Fiber Packing 0.55 0.76 0.301 0.204 0.41 0.34 0.36 0.28 

B-Tow Aspect Ratio 0.08 0.16 0.743 0.624 1.00 0.97 0.82 0.99 

C-Tow Volume Fraction 0.45 0.41 0.515 0.494 0.18 0.09 0.49 0.35 

AB 0.29 0.34 0.832 0.721 0.42 0.27 0.56 0.51 

AC 0.03 0.05 0.570 0.299 0.78 0.75 0.61 0.60 

BC 0.11 0.27 0.465 0.163 0.40 0.24 0.81 0.66 
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Table 5.8 Structural Scale Results of Parameter Study for AS-4/3501-6 Plain Weave 

 

 

Plain (3x3) Plain (6x6) 5HS (3x3) 

  

Longitudinal 

Modulus 

(GPa) 

Longitudinal 

Strain Energy 

(MPa) 

Shear 

Modulus 

(GPa) 

Shear 

Strain 

Energy 

(MPa) 

Longitudina

l Modulus 

(GPa) 

Longitudinal 

Strain Energy 

(MPa) 

Shear 

Modulus 

(GPa) 

Longitudina

l Modulus 

(GPa) 

Longitudinal 

Strain Energy 

(MPa) 

Shear 

Modulus 

(GPa) 

Shear Strain 

Energy 

(MPa) 

RUN 1 54.65 5.72 4.33 3.45 54.49 5.64 4.36 64.29 6.74 4.32 3.54 

RUN 2 53.99 5.56 4.33 3.45 54.10 5.60 4.35 64.24 6.76 4.46 3.53 

RUN 3 55.02 5.73 4.36 3.45 54.91 5.69 4.37 64.91 6.89 4.33 3.54 

RUN 4 54.17 5.57 4.41 3.47 54.72 5.69 4.32 63.45 6.60 4.43 3.53 

RUN 5 53.92 5.56 4.40 3.47 54.19 5.60 4.39 63.43 6.67 4.45 3.51 

RUN 6 52.79 5.35 4.35 3.45 55.16 5.74 4.38 62.99 6.56 4.41 3.52 

RUN 7 54.26 5.64 4.38 3.46 54.11 5.60 4.36 64.27 6.75 4.39 3.53 

RUN 8 52.73 5.34 4.41 3.47 53.94 5.58 4.36 64.00 6.71 4.39 3.52 

RUN 9 54.08 5.54 4.41 3.48 53.23 5.47 4.35 64.22 6.73 4.40 3.52 

RUN 10 54.05 5.63 4.46 3.49 54.12 5.57 4.42 63.72 6.65 4.33 3.54 

RUN 11 54.35 5.64 4.36 3.46 54.47 5.61 4.38 63.96 6.71 4.42 3.52 

RUN 12 54.30 5.58 4.33 3.44 55.34 5.77 4.35 64.02 6.74 4.39 3.53 

RUN 13 55.22 5.74 4.45 3.48 53.92 5.55 4.39 63.43 6.58 4.38 3.52 

Average 54.12 5.59 4.38 3.46 54.36 5.62 4.37 63.92 6.70 4.39 3.53 

Std. Dev  0.72 0.13 0.04 0.02 0.57 0.08 0.02 0.51 0.09 0.04 0.01 

% Dev 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 
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Table 5.9 Average Results for Structural Scale Parameter Study for AS-4/3501-6 Plain Weave 

 

 

  Plain (3x3) 5HS (3x3) 

 

  

Longitudinal 

Modulus 

(GPa) 

Longitudinal 

Strain 

Energy 

(MPa) 

Shear 

Modulus 

(GPa) 

Shear 

Strain 

Energy 

(MPa) 

Longitudinal 

Modulus 

(GPa) 

Longitudinal 

Strain 

Energy 

(MPa) 

Shear 

Modulus 

(GPa) 

Shear 

Strain 

Energy 

(MPa) 

Average Macro 58.29 5.23 4.40 3.82 62.09 5.76 4.40 3.83 

 

Structural 54.12 5.59 4.38 3.46 63.92 6.70 4.39 3.53 

Percent Standard Deviation Macro 0.14 0.17 0.04 0.02 0.11 0.12 0.04 0.03 

 

Structural 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.00 
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At the structural scale, the effects of multiple macroscale RUCs are studied. 

For both the tension and shear response, plain and 5hs weaves were investigated 

for 3x3 and 6x6 structural RUC cases. The two different size RUCs at the 

structural scale were used to investigate the sizing effects from the macro to 

structural scale. Each of the RUCs composing the 3x3 or 6x6 RUC at the 

structural scale is comprised of a macroscale RUC with a set of randomly 

determined architectural parameters. For example, one RUC would have a 62%  

tow volume fraction with an aspect ratio of 18 and square packing and another 

could be completely different. Each architectural parameter was randomly 

selected for each RUC. Thirteen cases were run for each structural RUC in order 

to achieve a broad spectrum of combinations. The results of all 13 runs are shown 

in Fig. 5.16 for the 3x3 and Fig. 5.17 for the 6x6. Table 5.8 shows the results of 

Table 5.10 Statistic Macroscale Results of Parameter Study for Plain Weave 

 

 

Long. Modulus 

(GPa) 

Shear 

Modulus 

(Gpa) 

Long Strain 

Energy (MPa) 

Shear Strain 

Energy 

(MPa) 

Avg. 58.29 4.40 10.47 7.64 

Std. Dev  7.99 0.16 1.73 0.17 

% Dev  0.14 0.04 0.17 0.02 

 

Table 5.11 Statistic Macroscale Results of Parameter Study for 5HS Weave 

 

Long. Modulus 

(GPa) 

Shear 

Modulus 

(Gpa) 

Long Strain 

Energy (MPa) 

Shear Strain 

Energy 

(MPa) 

Avg. 62.09 4.40 11.52 7.66 

Std. Dev  6.80 0.19 1.37 0.21 

% Dev  0.11 0.04 0.12 0.03 
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the structural cases. It is important to note that the variance is greatly reduced 

when compared to that of the macroscale plots. A comparison of the averages and 

standard deviations are shown in Table 5.9 and illustrates that the variation at the 

structural scale as compared to the macroscale is significantly reduced. For 

example, the maximum standard deviation at the macroscale showed up to a 15% 

while that at the structural scale was a mere 2%. Consequently, it appears that the 

effects of lower scale variation are diminished after one or two higher length 

scales of homogenization. Future work will investigate stochastic modeling of 

parameters as well as architectural nesting effects. 

 

 

Fig. 5.18 Material Variation Results on Plain Weave Composite subjected to 

Shear and Tensile Loading Respectively.  

 

5.6. Future Work 

In this report it was demonstrated that MSGMC is high capable of capturing 

even the highly nonlinear shear response with techniques such as plasticity and 

viscoplasticity. This research focused on the tensile and shear response, however 

modeling the compressive response is a critical issue as woven composites are 
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commonly used in a variety of applications. Nonlinear geometric effects are a 

critical mechanism that partially governs the compression of woven composites. 

Additionally, predictive capabilities for the load/unload and fatigue response of 

woven composites are still rudimentary and use of MSGMC to predict these as a 

valuable application of the multiscale micromechanics.
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Chapter 6 

6. Modeling Ceramic Woven Composites 

6.1. Introduction 

For this particular study, a five harness satin weave is considered. In this 

idealization of the architecture, the repeating unit cell is assumed to be 

representative of the entire structure.  A multiscale framework depicting the 

critical length scales and features for this study is shown in Fig. 6.2. A picture of 

the fabric with the repeating unit cell outlined in red is shown in Fig. 2.5; in this 

study nesting/ply shifting will be ignored. To create a RUC suitable for analysis, 

the weave is discretized into several sub-volume cells. There are two types of 

materials comprising all the subcells: fiber tows and interweave matrix. This final 

3D discretization is shown in Fig. 6.1, along with example lower scale RUC 

representing the multiscale analyses of the interweave voids,  tows and intra-tow 

voids. In the figure, fiber tows are indicated through the lined subcells. The lines 

indicate the direction of orientation. The blank subcells represent the interweave 

matrix. This results in a 10x10x4 sized RUC of dimensions shown in Eq. (15). In 

this equation w is the tow width and delta, the tow spacing, can be determined 

from 
  towf f

w
V V

w 



. The proper overall fiber volume fraction and tow width is 

enforced by back calculating the tow spacing. Due to the chemical vapor infusion 

process used to manufacture the woven fabric composites, there exists high levels 

of porosity, as shown in Fig. 6.2, that cannot be neglected. 
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Intramatrix 

Weave

Fiber/Matrix 

RUC with 

Interface

Intratow Void

 

Fig. 6.1 Discretized 5-Harness Satin Subcell Configuration 
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Fig. 6.2 Multiscale methodology with architectural effects being varied shown at 

three length scales considered. Actual micrographs are complements of P. 

Bonacuse, NASA GRC, 2010. 

6.2.Void Modeling 

Voids are accounted for in the RUC in one of three ways: 1) void content 

is neglected; 2) voids are assumed to be evenly distributed through the weave; or 

3) voids are localized to critical areas determined from optical inspection 

(microscopy). Fig. 6.3 illustrates the three types of void modeling at the 

macroscale. The first figure shows no voids accounted for anywhere, the second 

figure depicts voids evenly distributed in the weave matrix (yellow, e.g., 12.7% 

void fraction), and the third figure shows high density (e.g., 85%) void regions in 

red and low density (e.g., 5%) void regions in blue. Note in both void idealization 

the total interweave void volume fraction is held constant at 12.7%. The voids are 

accounted for at a smaller length scale by analyzing a separate RUC 

Macro

Meso
Micro

Fiber

Matrix

1

2

3

4

5

1 2 3  4 5 

Matrix Parameters

t

w

AR=w/t

Tow Aspect Ratio(AR)

Square

Volume fraction

Parameters Varied 
at Associated Length 

Scale
Weave Void ContentTow Void Content



  144 

homogenizing those properties. This is done for two primary reasons. First, 

explicit modeling of voids in GMC will tend to “eliminate” an entire row and 

column due to the constant strain field assumptions within a subcell. Yet, by 

performing a separate analysis, this effect is dampened since void volume and 

shape merely change the resulting anisotropic “constituent” response. Secondly, 

this allows for a faster, more accurate representation of void shape and 

distribution then explicitly modeling voids at this length scale.  

 

 / 4, / 4, / 4, / 4D t t t t
 

 , , , ,H w w w w w         
 

 , , , ,L w w w w w         
 

(6. 1) 

 

 

 
Fig. 6.3 Three Types of Void Distributions; white no voids, yellow and blue 

represent 5% voids, and red represents 85% void content 
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Fig. 6.3 (contd.) Three Types of Void Distributions; white no voids, yellow and 

blue represent 5% voids, and red represents 85% void content 

6.3. Tow Repeating Unit Cell With Interface 

The fiber tow bundles are modeled using a doubly periodic (continuously 

reinforced) 4x4 repeating unit cell consisting of three materials: fiber, fiber 

coating/interface, and matrix. Consequently the effective tow properties are 

influenced at each load step by all three constituents. In Fig. 6.4 , the black 

denotes the fiber, the hatched area represents the interface, and white represents 

the matrix. At this level there are also voids due to the CVI process. However, the 

voids at this level appear to be more evenly distributed than at the weave level 

and thus are represented by evenly distributing the void content in the tow areas 
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(see tow in Fig. 6.4). This is accomplished once again by calling a separate void 

analysis for each matrix subcell in the RUC, just as described in the weave RUC 

section. Consequently, the effective tow properties are being influence at each 

increment by all three constituents, matrix damage and intra-tow void volume 

fraction.  For each fiber tow bundle, the orientation is carefully computed such 

that the undulation is properly accounted for and the failure criteria can be applied 

in the local coordinate system.  

 
Fig. 6.4 Fiber Tow Bundle with Interface RUC 

 

Voids are modeled through computation of a triply periodic 

(discontinuously reinforced) 2x2x2 RUC as shown in Fig. 6.5. The hatched 

subcell represents the void portion while the white represents the matrix. The 

relative size of the void cell is what determines the overall void content in both 

the fiber tow bundles and the weave. As mentioned previously, modeling of voids 

as a separate GMC analysis has many advantages. The overall RUC of the weave 

will remain constant regardless of the shape and distribution of the voids, i.e. no 

rediscretization is required. Consequently, the void location, quantity, and 

geometry can be quickly changed. Lastly, the strength and stiffness degradations 

and stress concentrations can be captured through GMC without reducing the 

accuracy of the analysis at the macroscale. 
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Fig. 6.5 3D Void RUC 

 

6.4.Constitutive and Failure Modeling 

6.4.1. Matrix Damage Modeling 

The matrix material, assumed to be the same in both the weave and tow, is 

modeled through a scalar damage mechanics constitutive model driven by the 

magnitude of triaxiality, i.e. the first invariant of the stress/strain tensor. This 

constitutive model represents the cracks and brittle failure often seen in these 

CMCs.  A scalar damage variable, , which varies between zero (no damage) and 

one (complete failure/damage), scales the elastic portion of the stiffness tensor 

and is employed directly in the stress strain relationship.  

  1 C   
 

(6. 2) 

To determine the magnitude of damage, a damage rule is defined as: 

 3 0H Hf nK   
 (6. 3)  

In this potential, n represents the damaged normalized secant modulus and K 

represents the instantaneous tangent bulk modulus, see Fig. 6.6. This potential 



  148 

uses a stress and strain measure as defined by the first invariant of the respective 

tensors. This is shown in the following equations. 

 

 
 

 
 

11 22 33

1

11 22 33

1

3

3

H

H

I

I

  
 

  
 

 
 

 
 

 

(6. 4) 

The damage rule in (6. 2) is only active once a critical stress criteria has been 

reach, i.e., it is only valid when H > dam. Equation (16) can be rewritten in 

incremental form with i+1 denoting the next increment  

(

i+1 
=

 

i 
+

 


i+1
). 

 
1 13 0i i i

H Hf n K      
 (6. 5) 

This can be converted to a strain based function by substituting the following 

relationship in for the stress increment: 

   1 1 1 1 13i i i i i i

H H HK K K          
 

(6. 6) 

Resulting in: 

   0 1 1 1 1 1 0i i i i i i

H H HnK K K K           
 

(6. 7) 

where K
0
 represents the initial bulk modulus, see Fig. 6.6. The instantaneous 

tangent bulk modulus can be related back to the damage scalar through 

  1 1 01i iK K  
 

(6. 8) 

: 

 



  149 

Substitution of (6. 8) into (6. 7) and simplification yields a formulation for the 

damage scalar: 

 
 

1 1
1 1 0

1 1
1

i i i
i i H H

i i

H H

n
K

  
 

 

 
 

 

 
  

 
 

(6. 9) 

where the initial value,  
0
, is zero. 

 

 
Fig. 6.6 Schematic showing bulk moduli change as function of triaxial strain. 

6.4.2. Fiber Failure Modeling 

The fiber is assumed to behave linearly elastic up to failure, with failure 

following the Hashin type failure criterion put forth in 1980, see Ref. 9.  This 

criterion determines the catastrophic failure of the fiber based on the axial and 

shear strengths. When the failure criterion exceeds 1, the fiber stiffness matrix is 

degraded to a minimal value. A key assumption made in this analysis is that the 

compliant fiber interface will fail simultaneously with the fiber and does not 

present its own failure modes. The failure stress levels presented later are an in-

situ failure stress considering the interface. 
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  
2

2 211
13 122 2

1

axial axial

f


 
 

    (6. 10) 

6.5.Results 

For this study, a five harness satin weave with a CVI-SiC matrix and iBN-

Sylramic fiber (silicon carbide fiber coated with boron nitride) were chosen, due  

to the availability of experimental data for correlation. An approximate overall 

fiber volume fraction of 36% (which was held fixed for all cases examined) was 

determined along with a tow width of 10mm and total thickness of 2.5mm (i.e., 

eight plies), see actual micrograph inserts in Fig. 6.2 (compliments of P. 

Bonacuse, NASA GRC). The properties and necessary material parameters are 

listed in Tables 6.1 through 6.5, wherein the elastic properties were determined 

Table 6.1 iBN-Sylramic Fiber Properties 

Name iBN-Sylramic 

Modulus 400 GPa 

Poisson's Ratio 0.2 

Axial Strength 2.2 GPa 

Shear Strength 900 MPa 

 

Table 6.2 CVI-SiC Matrix Properties 

Name CVI-SiC 

Modulus 420 GPa 

Poisson's Ratio 0.2 

σdam 180 MPa 

n 0.04 
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from either published values or discussions with colleagues while the strength and 

damage parameters were obtain from correlation with the macrolevel tensile 

response curve, shown in Fig. 6.7.  

A typical response curve of an experimental, on-axis, tensile test is shown 

in Fig. 6.7, taken from Morscher (see Ref. 7 and 8), and is overlaid with a 

baseline correlation using the localized void model (see Fig. 6.3c). The simulated 

response shows good correlation with the experimental curve, approximately 

capturing the deviation from proportionality (often referred to as “first matrix 

cracking”) and failure stress. In Fig. 6.8, the underlying mechanisms causing 

nonlinearity (which are subtle in some places), are denoted; the four primary 

events being: intra-tow matrix damage, inter-weave matrix damage (in the low 

stress and also in the high stress region) and fiber failure. The multiple damage 

initiation points are due to two reasons. First, different regions of the weave RUC 

Table 6.3 Boron Nitride Fiber Interface Properties 

Name Boron Nitride 

Modulus 22 GPa 

Poisson's Ratio 0.22 

 

Table 6.4 5HS iBN-Sylramic/CVI-SIC Weave Architecture Properties 

Type 5HS 

Fiber Volume Fraction 36% 

Tow Volume Fraction 78% 

Tow Width 10mm 

Tow Spacing 2.78mm 

Thickness 2.5mm 

Matrix CVI-SiC 
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will initiate damage at different times. Secondly, different tow subcells within a 

given region initiate local damage at different time’s thus providing variable 

effective tow properties. It is useful also to look at the instantaneous secant elastic 

modulus, which degrades due to matrix damage as shown in Fig. 6.9. It is easier 

to understand the degradation effects due to the matrix by directly looking at the 

stiffness effects. In a typical tensile response curve, there are four significant 

events that are useful for characterizing the material; these are: 1) initial modulus 

2) point of nonlinearity (first matrix cracking) 3) post first matrix cracking (i.e., 

damaged) modulus and 4) fiber failure point. The subsequent parametric study 

will focus on the impact that material and architectural parameters have on these 

four significant measures.  

 
Fig. 6.7 Typical Experimental Response Curve

7,8
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Furthermore, it is critical to understand the underlying mechanisms 

governing these events. In the case of the initial modulus, it is clear that the 

individual constituents’ stiffness matrices and the weave architecture are primary 

drivers, along with possible microcracking of the matrix constituent. The fact that 

some damage occurs before the first major point of nonlinearity, is substantiated 

by the experimental acoustic emission results in Ref. 7.  Similarly, the model 

attributes this initial cracking to damage in the intra-tow matrix and to damage in 

the high void density region of the inter-weave matrix (known as the high stressed 

region). The second event (i.e., the first major point of nonlinearity) occurs at 

approximately 0.075% strain, for the CMC examined, is said to be “first matrix 

cracking”. This point is taken to reflect a significant crack (or coalescence of 

microcracking) occurring in either the tow or weave matrix; thus enabling 

environmental attack of the composite. Correlating model results to that of the 

typical response (see Fig. 6.7), the model predicts that cracking occurs in both the 

tow and weave, at “first matrix cracking”. Thirdly, the slope of the post first 

matrix cracking curve (damage modulus) is determined by the response of the 

tows in the loading direction, matrix material (i.e., the behavior after damage 

initiation) and corresponding constitutive model and weave architecture. Again, 

Table 6.5 5HS iBN-Sylramic/CVI-SIC Tow Architecture Properties 

Tow Fiber Volume Fraction 46% 

Tow Packing Structure Square 

Fiber IBN-Sylramic 

Matrix CVI-SiC 

Interface BN 
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the experimental acoustic emission results (of Ref. 7) are consistent with this in 

that they show some damage gradually occurring after first matrix cracking within 

this region of the response curve. This is most likely a combination of all previous 

damage growing as well as the onset of new damage in the high stressed regions. 

This damage progression continues with continuous local stress redistribution 

from matrix to tow/fiber until the final failure point is determined by reaching the 

failure strength of the fibers within the tow.  Note, although not considered here, 

MSGMC can incorporate statistical fiber breakage by modeling multiple fibers 

within the Tow RUC.  Further although both the axial and shear fiber failure 

strength values given in Table 6.1 were backed out from the composite level 

tensile curve, these parameters should be experimentally determined from either 

individual monofilament and/or tow testing. To the authors knowledge such tests 

have not be conducted to date, but will be critical tests that should be done in the 

future.  
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Fig. 6.8 Typical Simulated Response Curve 

 
Fig. 6.9 Typical Simulated Secant Modulus 
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6.5.1. Effects of Material Properties 

To understand the influence of constituent material variation on the overall 

macro response; three of the matrix material constitutive model parameters (i.e., 

the initial modulus, post first matrix cracking modulus, n, and critical cracking 

stress, σdam) were varied. Note, these properties were varied a significant amount 

from the baseline so that their effect could be clearly seen.  For example, the 

initial modulus was increased by 50%, in another case n was increased by 200% 

and in a third case σdam was increased by 100%.  Considering the results in Fig. 

6.7, one would expect that changing the matrix modulus should correspond to 

changing the initial weave modulus and post first matrix cracking modulus. This 

is in agreement with the results shown in Fig. 6.10. In addition to the weave 

stiffness changing, the onset of “first matrix cracking” is also affected; resulting 

in a higher stress level (approximately 10%) and lower strain to failure 

(approximately 10%). Next changing only the parameter n from that of the 

baseline, one would expect the post first matrix cracking modulus to be primarily 

impacted, as verified in Fig. 6.10, with a corresponding change in failure stress 

(e.g., increased 10%), failure strain (e.g., decreased 12%), and post secondary 

modulus (e.g., increased 120%). Finally, increasing σdam caused the “first matrix 

cracking” onset to be delayed (approximately 110 MPa, or 94%) resulting in 

higher overall failure stresses (increase of 8%) and a lower failure strain level of 

0.0031 (a 24% reduction). Note that the initial weave modulus and post first 

matrix cracking modulus are nearly unchanged, in this case.  
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Fig. 6.10 Variation of Matrix Constituent Material Properties 
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packing structure, coating thickness, and fiber tow shifting to name a few. Future 

work will determine which of these parameters are the most significant. The tow 

fiber volume fraction and void volume fraction are both considered a mesoscale 

effect because their geometrical properties are involved in the mesoscale 

concentration matrix (Eq. (2)); whereas, the tow aspect ratio is considered a 

macroscale property because it is taken into account in the macroscale 

concentration matrices (Eqs. (5) and (11)). The tow volume was varied over a 

narrow range indicative of typical experimental variation: 0.46, 0.48, and 0.50. 

These three values were chosen based on common experimental values obtained 

for CMCs. Similarly, realistic tow aspect ratios were also chosen, i.e.,  8, 10 and 

12, where a value of 10 is typical for CMCs and three different fiber void volume 

fractions were used; 0.01, 0.05, and 0.07. 

In Fig. 6.11 the effects of weave void distribution are examined; wherein 

three line plots (each corresponding to an assumed void distribution discussed 

earlier). Two cases, that is no void modeling and uniformly distributed voids, fail 

to capture the correct overall response. As the initial modulus is too stiff, “first 

matrix cracking” stress and failure stress levels are too high and the strain to 

Table 6.6 Varied Parameters and Ranges for 5HS iBN-Sylramic/CVI-SiC 

Study 

Architectural Parameter Relevant Length Scale Values 

Tow Fiber Volume 

Fraction (Vtf)  
Meso 0.46,0.48,0.50 

Tow Void Volume 

Fraction 
Meso 0.01,0.05,0.07 

Tow Aspect Ratio (AR)  Macro 8,10,12 

Weave Void Distribution Macro None, Even, Localized 
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failure too large. This is a result of incorrect local failure modes and local stress 

distribution. Therefore one can concluded that to accurately capture the overall in-

plane deformation and failure response the analysis must incorporate accurate 

localized void distributions.  In addition it has been observed
[8-10]

 that the out-of-

plane moduli is significantly reduced as compared to that calculated when void 

shape is not accurately accounted for; only recently, has a sheet like network of 

voids been microscopically observed, Bonocuse et.al.
[11,12]

,.  Consquently, the 

influence of void shape is illustrated in Fig. 6.12, wherein a cubic, cylindrical and 

sheet like void shape is examined given the case of localized voids.  The out-of-

plane moduli is significantly influenced by the assumed void shape, in that Ez = 

165, 172.5, and 88.8 GPa, when one considers cubic, cylindrical and flat (or sheet 

like) voids, respectively.  However, the in-plane response (both deformation and 

failure) is unaffected by void shape as shown in Fig. 6.12, as one might expect.   

 
Fig. 6.11 Effects of Weave Void Distribution 
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Fig. 6.12 Effect of void shape on tensile response, given localized void 

distribution. 
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practical purposes being identical. Furthermore, the post first matrix cracking 

modulus changes some 24% (i.e., from 72 GPa to 90 GPa) with a corresponding 

16% change in final failure strain. The configuration providing the stiffest 

response is composed of a tow volume fraction of 46%, aspect ratio (AR) equal to 

12 and tow void fraction of 1%, whereas the most compliant response is generated 

using a tow volume fraction of 50%, aspect ratio (AR) equal to 8 and tow void 

fraction of 7%. 

In Fig. 6.14 through Fig. 6.16 the various responses are arranged so as to 

enable identification of parameter sensitivities. Fig. 6.14 shows the effect of tow 

void content on the overall response; where it can be seen that increasing the void 

content within the tow (thus lowering its effective stiffness) causes the macro 

response curve to be more compliant with generally an effect of increasing the 

strain to failure. Fig. 6.15 shows the effect of tow aspect ratio; where increasing 

the aspect ratio has the effect of stiffening the response curve and lowering the 

failure stress. Fig. 6.16 displays the influence of tow fiber volume fraction, which 

appears to be minimal at first glance. Although this trend is possible, as 

mentioned previously, it is strongly coupled with the overall weave void volume 

fraction and thus these two effects could be working in opposition to one another. 

Consequently, it is impossible to deduce from these graphs, the overall effect of 

tow fiber volume fraction. 

Comparing all parameters, the weave void locations, tow void content, 

fiber volume fraction within a tow and tow aspect ratio, one can assess the 

severity of these effects. For example, it is clear from Fig. 6.11, that the location 
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(and shape) of voids at the macroscale is a critical driving parameter relative to 

failure. This far outweighs all other parameters. Similarly, the effect of inter-ply 

tow nesting could also be a critical/primary driving factor, yet this effect has been 

left for future work. Besides the weave void content (i.e., location and shape), the 

tow void content has the strongest effect on post first matrix cracking stiffness 

and the tow aspect ratio has the strongest effect on failure strain. The tow fiber 

volume fraction appears to have a minimal effect. 

 
Fig. 6.13 All Simulated Cases 
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Fig. 6.14 Effects of Tow Void Content 
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Fig. 6.15 Effects of Aspect Ratio 
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Fig. 6.16 Effects of Tow Volume Fraction 

6.6. Future Work 

Here the mechanical response of the ceramic matrix woven composites was 

predicted with a high accuracy. CMCs however are typically multifunctional 

materials that are used in thermo-mechanical loading as a heat barrier and load 

bearing structure. Modeling the thermal stresses, creep and high temperature 
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effects of CMCs is the next progressive step. In addition, implementation of 

MSGMC with an oxidation model to predict the degradation due to chemical 

effects will be useful as CMCs are a highly multifunctional material. 
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Chapter 7 

7. Conclusion 

7.1. Conclusion 

This research in this dissertation can be summarized into two portions: 

multiscale modeling and analysis of complex composites. A novel 

micromechanics based multiscale modeling technique is reported that 

continuously bridges between all length scales and solves all governing equations 

simultaneously. This technique, known as MSGMC, is fully generalized for any 

multiple length scale periodic structure and fully capable with integrated with an 

elasto-plastic or damage mechanics based constitutive model. A specific 

formulation of MSGMC implementing a through thickness homogenization is 

formulated to allow for modeling of thin RUCs, such as woven and textile 

composites. Furthermore a reformulation to improve the computational efficiency 

is also provided. MSGMC was then used to analyze polymer matrix and ceramic 

matrix composites for triaxial and woven configurations. Results showed 

excellent correlation with experimental data and other theoretical methods.  
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APPENDIX B 

PLAIN WEAVE PARAMETRIC STUDY GRAPHS 
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 Figure 1 Fiber Packing Effects on Shear Response for a 5HS Weave. 

 

  



  180 

T
o
w

 V
o
lu

m
e 

F
ra

ct
io

n
 (

in
cr

ea
si

n
g
) 

 

 Aspect Ratio (Increasing) 

 
 9 18 36 

0
.6

2
 

 

0
.6

5
 

0
.7

0
 

  Figure 2 Fiber Packing Effects on Shear Response for a Plain 

Weave. 
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Figure 3 Fiber Packing Effects on Tensile Response for a Plain 

Weave. 
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  Figure 4 Fiber Packing Effects on Tensile Response for a 5HS 

Weave. 
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  Figure 5 Tow Aspect Ratio Effects on Shear Response for a Plain 

Weave. 
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  Figure 6 Tow Aspect Ratio Effects on Shear Response for a 5HS 

Weave. 
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  Figure 7 Tow Aspect Ratio Effects on Tensile Response for a Plain 

Weave. 

 

  



  186 

 

 

  Tow Volume Fraction (Increasing) 

 
  0.62 0.65 0.70 

F
ib

er
 P

ac
k
in

g
 S

q
u
ar

e 

 H
ex

ag
o
n
al

 

  Figure 8 Tow Aspect Ratio Effects on Tensile Response for a 5HS 

Weave. 
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  Figure 9 Tow Volume Fraction Effects on Shear Response for a Plain 

Weave. 
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  Figure 10 Tow Volume Fraction Effects on Shear Response for a 5HS 

Weave. 
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  Figure 11 Tow Volume Fraction Effects on Tensile Response for a 

Plain Weave. 
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  Figure 12 Tow Volume Fraction Effects on Tensile Response for a 

5HS Weave. 

 

 


