Description
Astronomy has a data de-noising problem. The quantity of data produced by astronomical instruments is immense, and a wide variety of noise is present in this data including artifacts. Many types of this noise are not easily filtered using traditional

Astronomy has a data de-noising problem. The quantity of data produced by astronomical instruments is immense, and a wide variety of noise is present in this data including artifacts. Many types of this noise are not easily filtered using traditional handwritten algorithms. Deep learning techniques present a potential solution to the identification and filtering of these more difficult types of noise. In this thesis, deep learning approaches to two astronomical data de-noising steps are attempted and evaluated. Pre-existing simulation tools are utilized to generate a high-quality training dataset for deep neural network models. These models are then tested on real-world data. One set of models masks diffraction spikes from bright stars in James Webb Space Telescope data. A second set of models identifies and masks regions of the sky that would interfere with sky surface brightness measurements. The results obtained indicate that many such astronomical data de-noising and analysis problems can use this approach of simulating a high-quality training dataset and then utilizing a deep learning model trained on that dataset.
Reuse Permissions
  • Downloads
    PDF (87.5 MB)

    Details

    Title
    • Specialized Noise Elimination in Astronomical Data using Deep Learning
    Contributors
    Date Created
    2024
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2024
    • Field of study: Software Engineering

    Machine-readable links