Description
Pan Tilt Traffic Cameras (PTTC) are a vital component of traffic managementsystems for monitoring/surveillance. In a real world scenario, if a vehicle is in pursuit of another vehicle or an accident has occurred at an intersection causing traffic stoppages, accurate and venerable

Pan Tilt Traffic Cameras (PTTC) are a vital component of traffic managementsystems for monitoring/surveillance. In a real world scenario, if a vehicle is in pursuit of another vehicle or an accident has occurred at an intersection causing traffic stoppages, accurate and venerable data from PTTC is necessary to quickly localize the cars on a map for adept emergency response as more and more traffic systems are getting automated using machine learning concepts. However, the position(orientation) of the PTTC with respect to the environment is often unknown as most of them lack Inertial Measurement Units or Encoders. Current State Of the Art systems 1. Demand high performance compute and use carbon footprint heavy Deep Neural Networks(DNN), 2. Are only applicable to scenarios with appropriate lane markings or only roundabouts, 3. Demand complex mathematical computations to determine focal length and optical center first before determining the pose. A compute light approach "TIPANGLE" is presented in this work. The approach uses the concept of Siamese Neural Networks(SNN) encompassing simple mathematical functions i.e., Euclidian Distance and Contrastive Loss to achieve the objective. The effectiveness of the approach is reckoned with a thorough comparison study with alternative approaches and also by executing the approach on an embedded system i.e., Raspberry Pi 3.
Reuse Permissions
  • Downloads
    PDF (3.4 MB)

    Details

    Title
    • TIPANGLE: A Machine Learning Approach for Accurate Spatial Pan and Tilt Angle Determination of Pan Tilt Traffic Cameras
    Contributors
    Date Created
    2023
    Subjects
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.C.St., Arizona State University, 2023
    • Field of study: Computer Science

    Machine-readable links