Description
Non-invasive visualization of the trigeminal nerve through advanced MR sequences and methods like tractography is important for studying anatomical and microstructural changes due to pathology like trigeminal neuralgia (TN), facial dystonia, multiple sclerosis, and for surgical pre-planning. The use of

Non-invasive visualization of the trigeminal nerve through advanced MR sequences and methods like tractography is important for studying anatomical and microstructural changes due to pathology like trigeminal neuralgia (TN), facial dystonia, multiple sclerosis, and for surgical pre-planning. The use of specific anatomical markers from CT, MPRAGE and cranial nerve imaging (CRANI) sequences, enabled successful tractography of patient-specific trajectory of the frontal, nasociliary, infraorbital, and mandibular nerve branches extending beyond the cisternal brain stem region and leading to the face. Performance of MPRAGE sequence together with the advanced T2-weighted CRANI sequence with and without a gadolinium contrast agent, was studied to characterize identification efficiency in smaller nerve structures in the extremities. A large FOV nerve visualization exam inclusive of the anatomy of all trigeminal nerve distal branches can be obtained within an acquisition time of 20 minutes using pre-contrast CRANI and MPRAGE. Post-processing with MPR and MIP images improved nerve visualization.Transcranial electrical stimulation techniques (TES) have been used for the treatment of multiple neurodegenerative diseases. These techniques involve placing electrodes on the scalp with multiple peripheral branches of the trigeminal nerve crossing directly under that may be stimulated. This was studied through hybrid computational realistic axon models. These models also facilitated studying the effects of electrode drift during experiments on the recruitment of peripheral nerves. An optimal point of lowest threshold was found while displacing the nerve horizontally i.e., the activation thresholds of both myelinated and unmyelinated axons increased when the electrodes were displaced medially and decreased to a certain extend when the electrodes were displaced laterally, after which further lateral displacement led to increase of thresholds. Inclusion of unmyelinated axons in the modeling provided the capability of finding maximum stimulation amplitude below which side effects like pain sensation may be avoided. In the case of F3 – F4 electrode montage the maximum amplitude was 2.39 mA and in case of RS – LS montage the maximum amplitude was 2.44 mA. Such modeling studies may be useful for personalization of TES devices for finding optimal positioning of electrodes with respect to target and stimulation amplitude range that minimizes side effects.
Reuse Permissions
  • Downloads
    pdf (6.4 MB)

    Details

    Title
    • Enhancing Patient-Specific Trigeminal Nerve Visualization and Neuromodulation.
    Contributors
    Date Created
    2023
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2023
    • Field of study: Biomedical Engineering

    Machine-readable links