Description
The advancement of cloud technology has impacted society positively in a number of ways, but it has also led to an increase in threats that target private information available on cloud systems. Intrusion prevention systems play a crucial role in

The advancement of cloud technology has impacted society positively in a number of ways, but it has also led to an increase in threats that target private information available on cloud systems. Intrusion prevention systems play a crucial role in protecting cloud systems from such threats. In this thesis, an intrusion prevention approach todetect and prevent such threats in real-time is proposed. This approach is designed for network-based intrusion prevention systems and leverages the power of supervised machine learning with Extreme Gradient Boosting (XGBoost) and Long Short-Term Memory (LSTM) algorithms, to analyze the flow of each packet that is sent to a cloud system through the network. The innovations of this thesis include developing a custom LSTM architecture, using this architecture to train a LSTM model to identify attacks and using TCP reset functionality to prevent attacks for cloud systems. The aim of this thesis is to provide a framework for an Intrusion Prevention System. Based on simulations and experimental results with the NF-UQ-NIDS-v2 dataset, the proposed system is accurate, fast, scalable and has a low rate of false positives, making it suitable for real world applications.
Reuse Permissions
  • Downloads
    PDF (2.3 MB)
    Download count: 8

    Details

    Title
    • A Network-Based Intrusion Prevention Approach for Cloud Systems Using XGBoost and LSTM Models
    Contributors
    Date Created
    2023
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2023
    • Field of study: Computer Science

    Machine-readable links