Evaluating Drivers and Sources of Pathogens to Surface Waters in Primarily Arid and Semi-Arid Tribal Lands of the United States

Document
Description
Pathogenic contamination is a significant factor contributing to the degradation of surface water both globally and within the United States. This leads to negative economic impacts, sickness, and, in severe cases, fatalities. As the world's population grows, pollution increases, placing

Pathogenic contamination is a significant factor contributing to the degradation of surface water both globally and within the United States. This leads to negative economic impacts, sickness, and, in severe cases, fatalities. As the world's population grows, pollution increases, placing more stress on water resources, particularly in arid regions. The situation is made worse by climate change. The forecasted expansion of arid and semi-arid land areas and alterations in precipitation patterns could have a significant impact on those living in poverty and dry regions. This dissertation aims to investigate previously undocumented threats to water quality through understanding pathogen drivers in arid and semi-arid environments and documenting wastewater infrastructure on Tribal lands. Specifically, I first investigated how ephemeral streams (common in arid and semiarid areas) impact the presence of pathogens in surface waters by identifying the main drivers of E. coli concentration from a series of proposed predictors. Second, I identified unknown potential sources of water quality impairments on Tribal lands, which are mainly rural and in arid or semiarid areas, focusing on wastewater infrastructure in these systems. I specifically quantified populations served by wastewater treatment plants and then used a remote sensing approach to identify possible unpermitted wastewater lagoons that often serve as the only wastewater infrastructure in some areas. The findings revealed unique insights that could help aid water management in arid and semiarid regions as well as in rural areas.