Description
The expression of complex proteins was studied in multiple plant systems. Recombinant spider silk, which could be utilized for biomedical applications such as coatings or doped into silk fibers, was successfully expressed in Nicotiana. benthamiana wild type and GnGn glycoengineered

The expression of complex proteins was studied in multiple plant systems. Recombinant spider silk, which could be utilized for biomedical applications such as coatings or doped into silk fibers, was successfully expressed in Nicotiana. benthamiana wild type and GnGn glycoengineered transgenic plants and purified from endogenous plant proteins which could be utilized for biomedical applications such as coatings or doped into silk fibers. However, the purification process requires further optimization to result in commercialized production of recombinant spider silk. Green fluorescent protein and Norovirus virus-like particles were expressed in multiple plant systems including alfalfa, beets, lettuce, and spinach, in addition to N. benthamiana, to determine the ability of these plant expression systems to produce vaccine candidates for edible vaccine applications in the agricultural sector as well as low-to-middle income countries. It was determined that alfalfa, beets, and lettuce are potential high production expression systems for edible vaccines however they require further optimization to be commercialized. Lastly, novel virus-like particles and antigen presenting nanoparticles based on the bacteriophage AP205 coat protein and norovirus capsid proteins fused to human papillomavirus L2 protein segments (S and P) were expressed in N. benthamiana and utilized to vaccinate mice against the L2 capsid protein (aa14-38x2 and aa14-122) of Human Papillomavirus 16 to study a potential boosting effect of the Recombinant Immune Complex vaccine platform upon prime-boost dosing with the virus-like particle being the prime and the Recombinant Immune Complex being the boost in this vaccine schema.
Reuse Permissions
  • Downloads
    PDF (1.3 MB)
    Download count: 3

    Details

    Title
    • The Expression of Complex Proteins in Plant Systems for Industrial and Biomedical Applications
    Contributors
    Date Created
    2023
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2023
    • Field of study: Molecular and Cellular Biology

    Machine-readable links