Description
Most stars in our galaxy are M–dwarfs, much cooler and smaller than the sun. The ubiquitous nature of these stars is also paired with the formation of terrestrial exoplanets orbiting them. The strategic placement of M-dwarfs between main-sequence stars and

Most stars in our galaxy are M–dwarfs, much cooler and smaller than the sun. The ubiquitous nature of these stars is also paired with the formation of terrestrial exoplanets orbiting them. The strategic placement of M-dwarfs between main-sequence stars and brown dwarfs, their uniqueness as exoplanet analogs, and their dominating presence in the galactic stellar population make them priority targets for study. This work investigates outstanding questions, including the need to acquire constraints on their chemical compositions to decode formation processes, evolution, and interaction with companion objects. Chapter 1 lays out a broad background emphasizing the importance of studying the most populous star in the galaxy, their far-reaching implications, and primarily the numerous challenges in characterizing the atmospheres and environments of these stars. Chapter 2 investigates the influence of M-dwarf star spots propagating into spectra of transiting terrestrial planets, showing that inaccurate modeling of M-dwarf photospheres leads to significant bias when inferring atmospheric properties of companion exoplanets. These biases persist despite correcting M-dwarf spot signatures imprinted onto the exoplanetary spectra, even with high-fidelity JWST observations. This result emphasizes the need for improved stellar atmosphere models as the first step to improving our understanding of the companion planets. To address this, chapter 3 introduces SPHINX—a new stellar atmosphere model grid for M-dwarfs. SPHINX provides improved constraints on fundamental properties of benchmark M-dwarf systems (e.g., temperature, surface gravity, radius, and chemistry). The improvement is significant relative to the state-of-the-art stellar model grid available today. Chapter 4 expands this model, applying it to mid-to-late type M-dwarfs, and investigating chemical trends in their atmospheric properties. Using low-resolution observations, both archival data (from SpeX Prism Library Database) and from previous empirical studies; this chapter presents constraints on fundamental atmospheric properties of 71 low-mass, late-type M-dwarfs to understand spectroscopic degeneracies arising due to stellar activity, cloud/dust condensation and convection. With SPHINX models, the chemical properties of these stars are compared against main-sequence stars to acquire a more holistic understanding of M-dwarfs as a class—in the quest to ultimately characterize their companions.
Reuse Permissions
  • Downloads
    PDF (36.2 MB)
    Download count: 1

    Details

    Title
    • The M-dwarf Atmosphere Problem
    Contributors
    Date Created
    2023
    Subjects
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2023
    • Field of study: Astrophysics

    Machine-readable links