Adapting Robotic Systems to User Control

Document
Description
In this work, I propose to bridge the gap between human users and adaptive control of robotic systems. The goal is to enable robots to consider user feedback and adjust their behaviors. A critical challenge with designing such systems

In this work, I propose to bridge the gap between human users and adaptive control of robotic systems. The goal is to enable robots to consider user feedback and adjust their behaviors. A critical challenge with designing such systems is that users are often non-experts, with limited knowledge about the robot's hardware and dynamics. In the domain of human-robot interaction, there exist different modalities of conveying information regarding the desired behavior of the robot, most commonly used are demonstrations, and preferences. While it is challenging for non-experts to provide demonstrations of robot behavior, works that consider preferences expressed as trajectory rankings lead to users providing noisy and possibly conflicting information, leading to slow adaptation or system failures. The end user can be expected to be familiar with the dynamics and how they relate to their desired objectives through repeated interactions with the system. However, due to inadequate knowledge about the system dynamics, it is expected that the user would find it challenging to provide feedback on all dimension's of the system's behavior at all times. Thus, the key innovation of this work is to enable users to provide partial instead of completely specified preferences as with traditional methods that learn from user preferences. In particular, I consider partial preferences in the form of preferences over plant dynamic parameters, for which I propose Adaptive User Control (AUC) of robotic systems. I leverage the correlations between the observed and hidden parameter preferences to deal with incompleteness. I use a sparse Gaussian Process Latent Variable Model formulation to learn hidden variables that represent the relationships between the observed and hidden preferences over the system parameters. This model is trained using Stochastic Variational Inference with a distributed loss formulation. I evaluate AUC in a custom drone-swarm environment and several domains from DeepMind control suite. I compare AUC with the state-of-the-art preference-based reinforcement learning methods that are utilized with user preferences. Results show that AUC outperforms the baselines substantially in terms of sample and feedback complexity.