Description
Exoelectrogenic organisms transfer electrons from their quinone pool to extracellular acceptors over m-scale distances through appendages known as “biological nanowires”. These structures have been described as cytochrome-rich membrane extensions or pili. However, the components and mechanisms of this long-range electron transfer remain largely unknown. This dissertation describes supramolecular assembly of a tetraheme cytochrome into well-defined models of microbial nanowires and uses those structures to explore the mechanisms of ultra-long-range electron transfer. Chiral-induced-spin-selectivity through the cytochrome is also demonstrated. Nanowire extensions in Shewanella oneidensis have been hypothesized to transfer electrons via electron tunneling through proteinaceous structures that reinforce π-π stacking or through electron hopping via redox cofactors found along their lengths. To provide a model to evaluate the possibility of electron hopping along micron-scale distances, the first part of this dissertation describes the construction of a two-component, supramolecular nanostructure comprised of a small tetraheme cytochrome (STC) from Shewanella oneidensis fused to a peptide domain that self-assembles with a β-fibrillizing peptide. Structural and electrical characterization shows that the self-assembled protein fibers have dimensions relevant to understanding ultralong-range electron transfer and conduct electrons along their length via a cytochrome-mediated mechanism of electron transfer. The second part of this dissertations shows that a model three-component fiber construct based on charge complementary peptides and the redox protein can also be assembled. Structural and electrical characterization of the three-component structure also demonstrates desirable dimensions and electron conductivity along the length via a cytochrome-mediated mechanism.
In vivo, it has been hypothesized that cytochromes in the outer surface conduit are spin-selective. However, cytochromes in the periplasm of Shewanella oneidensis have not been shown to be spin selective, and the physiological impact of the chiral-induced-spin-selectivity (CISS) effect on microbial electron transport remains unclear. In the third part of this dissertation, investigations via spin polarization and a spin-dependent conduction study show that STC is spin selective, suggesting that spin selectivity may be an important factor in the electron transport efficiency of exoelectrogens.
In conclusion, this dissertation enables a better understanding of long-range electron transfer in bacterial nanowires and bioelectronic circuitry and offers suggestions for how to construct enhanced biosensors.
Download count: 2
Details
Title
- Supramolecular Assembly of Redox Proteins for Ultralong-Range Biological Electron Transfer
Contributors
- NWACHUKWU, JUSTUS NMADUKA (Author)
- Jones, Anne K. (Thesis advisor)
- Mills, Jeremy (Committee member)
- Stephanopoulos, Nicholas (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2023
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: Ph.D., Arizona State University, 2023
- Field of study: Biochemistry