Description
In-Band Full-Duplex (IBFD) can maximize the spectral resources and enable new types of technology, but generates self-interference (SI) that must be mitigated to enable practical applications. Analog domain SI cancellation (SIC), usually implemented as a digitally controlled adaptive filter, is

In-Band Full-Duplex (IBFD) can maximize the spectral resources and enable new types of technology, but generates self-interference (SI) that must be mitigated to enable practical applications. Analog domain SI cancellation (SIC), usually implemented as a digitally controlled adaptive filter, is one technique that is necessary to mitigate the interference below the noise floor. To maximize the efficiency and performance of the adaptive filter this thesis studies how key design choices impact the performance so that device designers can make better tradeoff decisions. Additionally, algorithms are introduced to maximize the SIC that incorporate the hardware constraints. The provided simulations show up to 45dB SIC with 7 bits of precision at 100MHz bandwidth.
Reuse Permissions
  • Downloads
    PDF (5.7 MB)
    Download count: 5

    Details

    Title
    • In-Band Full Duplex Analog Control and Analysis
    Contributors
    Date Created
    2023
    Subjects
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2023
    • Field of study: Electrical Engineering

    Machine-readable links