Description
Recommendation systems provide recommendations based on user behavior andcontent data. User behavior and content data are fed to machine learning algorithms to train them and give recommendations to the users. These algorithms need a large amount of data for a reasonable conversion

Recommendation systems provide recommendations based on user behavior andcontent data. User behavior and content data are fed to machine learning algorithms to train them and give recommendations to the users. These algorithms need a large amount of data for a reasonable conversion rate. But for small applications, the available amount of data is minimal, leading to high recommendation aberrations. Also, when an existing large scaled application with a high amount of available data uses a new recommendation system, it requires some time and testing to decide which recommendation algorithm is best suited to get higher conversion rates. This learning curve costs highly when the user base and data size are significantly high. In this thesis, A/B testing is used with manual intervention in the decision-making of recommendation systems. To understand the effectiveness of the recommendations, user interaction data is compared to compare experiences. Based on the comparisons, the experiments conclude the effectiveness of A/B testing for the recommendation system.
Reuse Permissions
  • Downloads
    PDF (1.4 MB)
    Download count: 3

    Details

    Title
    • A/B Testing-based Recommendation Systems
    Contributors
    Date Created
    2023
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2023
    • Field of study: Software Engineering

    Machine-readable links