Description

The burden of dementia and its primary cause, Alzheimer’s disease, continue to devastate many with no available cure although present research has delivered methods for risk calculation and models of disease development that promote preventative strategies. Presently Alzheimer’s disease affects

The burden of dementia and its primary cause, Alzheimer’s disease, continue to devastate many with no available cure although present research has delivered methods for risk calculation and models of disease development that promote preventative strategies. Presently Alzheimer’s disease affects 1 in 9 people aged 65 and older amounting to a total annual healthcare cost in 2023 in the United States of $345 billion between Alzheimer’s disease and other dementias making dementia one of the costliest conditions to society (“2023 Alzheimer’s Disease Facts and Figures,” 2023). This substantial cost can be dramatically lowered in addition to a reduction in the overall burden of dementia through the help of risk prediction models, but there is still a need for models to deliver an individual’s predicted time of onset that supplements risk prediction in hopes of improving preventative care. The aim of this study is to develop a model used to predict the age of onset for all-cause dementias and Alzheimer’s disease using demographic, comorbidity, and genetic data from a cohort sample. This study creates multiple regression models with methods of ordinary least squares (OLS) and least absolute shrinkage and selection operator (LASSO) regression methods to understand the capacity of predictor variables that estimate age of onset for all-cause dementia and Alzheimer’s disease. This study is unique in its use of a diverse cohort containing 346 participants to create a predictive model that originates from the All of Us Research Program database and seeks to represent an accurate sampling of the United States population. The regression models generated had no predictive capacity for the age of onset but outline a simplified approach for integrating public health data into a predictive model. The results from the generated models suggest a need for continued research linking risk factors that estimate time of onset.

Reuse Permissions
  • 1.6 MB application/pdf

    Download restricted. Please sign in.
    Restrictions Statement

    Barrett Honors College theses and creative projects are restricted to ASU community members.

    Download count: 3

    Details

    Title
    • Preliminary Model of Alzheimer’s Disease Age of Onset From the All of Us Database
    Contributors
    Date Created
    2023-05
    Resource Type
  • Text
  • Machine-readable links