Description
Over the past few decades, medical imaging is becoming important in medicine for disease diagnosis, prognosis, treatment assessment and health monitoring. As medical imaging has progressed, imaging biomarkers are being rapidly developed for early diagnosis and staging of disease. Detecting

Over the past few decades, medical imaging is becoming important in medicine for disease diagnosis, prognosis, treatment assessment and health monitoring. As medical imaging has progressed, imaging biomarkers are being rapidly developed for early diagnosis and staging of disease. Detecting and segmenting objects from images are often the first steps in quantitative measurement of these biomarkers. While large objects can often be automatically or semi-automatically delineated, segmenting small objects (blobs) is challenging. The small object of particular interest in this dissertation are glomeruli from kidney magnetic resonance (MR) images. This problem has its unique challenges. First of all, the size of glomeruli is extremely small and very similar with noises from images. Second, there are massive of glomeruli in kidney, e.g. over 1 million glomeruli in human kidney, and the intensity distribution is heterogenous. A third recognized issue is that a large portion of glomeruli are overlapping and touched in images. The goal of this dissertation is to develop computational algorithms to identify and discover glomeruli related imaging biomarkers. The first phase is to develop a U-net joint with Hessian based Difference of Gaussians (UH-DoG) blob detector. Joining effort from deep learning alleviates the over-detection issue from Hessian analysis. Next, as extension of UH-DoG, a small blob detector using Bi-Threshold Constrained Adaptive Scales (BTCAS) is proposed. Deep learning is treated as prior of Difference of Gaussian (DoG) to improve its efficiency. By adopting BTCAS, under-segmentation issue of deep learning is addressed. The second phase is to develop a denoising convexity-consistent Blob Generative Adversarial Network (BlobGAN). BlobGAN could achieve high denoising performance and selectively denoise the image without affecting the blobs. These detectors are validated on datasets of 2D fluorescent images, 3D synthetic images, 3D MR (18 mice, 3 humans) images and proved to be outperforming the competing detectors. In the last phase, a Fréchet Descriptors Distance based Coreset approach (FDD-Coreset) is proposed for accelerating BlobGAN’s training. Experiments have shown that BlobGAN trained on FDD-Coreset not only significantly reduces the training time, but also achieves higher denoising performance and maintains approximate performance of blob identification compared with training on entire dataset.
Reuse Permissions
  • Downloads
    PDF (2.7 MB)

    Details

    Title
    • Novel Computational Algorithms for Imaging Biomarker Identification
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Industrial Engineering

    Machine-readable links