Description
Multi-segment manipulators and mobile robot collectives are examples of multi-agent robotic systems, in which each segment or robot can be considered an agent. Fundamental motion control problems for such systems include the stabilization of one or more agents to target

Multi-segment manipulators and mobile robot collectives are examples of multi-agent robotic systems, in which each segment or robot can be considered an agent. Fundamental motion control problems for such systems include the stabilization of one or more agents to target configurations or trajectories while preventing inter-agent collisions, agent collisions with obstacles, and deadlocks. Despite extensive research on these control problems, there are still challenges in designing controllers that (1) are scalable with the number of agents; (2) have theoretical guarantees on collision-free agent navigation; and (3) can be used when the states of the agents and the environment are only partially observable. Existing centralized and distributed control architectures have limited scalability due to their computational complexity and communication requirements, while decentralized control architectures are often effective only under impractical assumptions that do not hold in real-world implementations. The main objective of this dissertation is to develop and evaluate decentralized approaches for multi-agent motion control that enable agents to use their onboard sensors and computational resources to decide how to move through their environment, with limited or absent inter-agent communication and external supervision. Specifically, control approaches are designed for multi-segment manipulators and mobile robot collectives to achieve position and pose (position and orientation) stabilization, trajectory tracking, and collision and deadlock avoidance. These control approaches are validated in both simulations and physical experiments to show that they can be implemented in real-time while remaining computationally tractable. First, kinematic controllers are proposed for position stabilization and trajectory tracking control of two- or three-dimensional hyper-redundant multi-segment manipulators. Next, robust and gradient-based feedback controllers are presented for individual holonomic and nonholonomic mobile robots that achieve position stabilization, trajectory tracking control, and obstacle avoidance. Then, nonlinear Model Predictive Control methods are developed for collision-free, deadlock-free pose stabilization and trajectory tracking control of multiple nonholonomic mobile robots in known and unknown environments with obstacles, both static and dynamic. Finally, a feedforward proportional-derivative controller is defined for collision-free velocity tracking of a moving ground target by multiple unmanned aerial vehicles.
Reuse Permissions
  • Downloads
    PDF (7.5 MB)
    Download count: 3

    Details

    Title
    • Decentralized Motion Planning for Autonomous Multi-Agent Systems: Multi-Segment Manipulators and Mobile Robot Collectives
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Electrical Engineering

    Machine-readable links