Development of an Ultrasound-transparent Organ-on-chip Platform Towards Modeling Bubble-assisted Focused Ultrasound (BAFUS) Blood-brain-barrier (BBB) Disruption for Glioblastoma Therapy

Document
Description
The blood-brain-barrier (BBB) is a significant obstacle for treating many neurological disorders. Bubble-assisted focused ultrasound (BAFUS) medicated BBB disruption is a promising technology that enables the delivery of large drug doses at targeted locations across the BBB. However, the current

The blood-brain-barrier (BBB) is a significant obstacle for treating many neurological disorders. Bubble-assisted focused ultrasound (BAFUS) medicated BBB disruption is a promising technology that enables the delivery of large drug doses at targeted locations across the BBB. However, the current lack of an in vitro model of this process hinders the full understanding of BAFUS BBB disruption for better translation into clinics. In this work, a US-transparent organ-on-chip device has been fabricated that can be critical for the in vitro modeling of the BAFUS BBB disruption. The transparency of the device window to focused ultrasound (FUS) was calculated theoretically and demonstrated by experiments. Nanobubbles were fabricated, characterized by cryogenic transmission electron microscopy (cryo-TEM), and showed bubble cavitation under FUS. Human colorectal adenocarcinoma (Caco-2) cells were used to form a good cellular barrier for BAFUS barrier disruption, as suggested by the measured permeability and transepithelial electrical resistance (TEER). Finally, barrier disruption and recovery were observed in BAFUS disrupted US-transparent organ-on-chips with Caco-2 barriers, showing great promise of the platform for future modeling BAFUS BBB disruption in vitro.