Description
Macromolecular structural biology advances the understanding of protein function through the structure-function relationship for applications to scientific challenges like energy and medicine. The proteins described in these studies have applications to medicine as targets for therapeutic drug design. By understanding

Macromolecular structural biology advances the understanding of protein function through the structure-function relationship for applications to scientific challenges like energy and medicine. The proteins described in these studies have applications to medicine as targets for therapeutic drug design. By understanding the mechanisms and dynamics of these proteins, therapeutics can be designed and optimized based on their unique structural characteristics. This can create new, focused therapeutics for the treatment of diseases with increased specificity — which translates to greater efficacy and fewer off-target effects. Many of the structures generated for this purpose are “static” in nature, meaning the protein is observed like a still-frame photograph; however, the use of time-resolved techniques is allowing for greater understanding of the dynamic and flexible nature of proteins. This work advances understanding the dynamics of the medically relevant proteins NendoU and Taspase1 using serial crystallography to establish conditions for time-resolved, mix-and-inject crystallographic studies.
Reuse Permissions
  • Downloads
    PDF (13.7 MB)

    Details

    Title
    • Serial Crystallographic Studies for Therapeutic Drug Advancement
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Biochemistry

    Machine-readable links