Description
Climate change is one of the most pressing issues facing humanity, and cities are likely to experience many of the most dangerous effects of climate change. One way that cities aim to adapt to become more resilient to climate change

Climate change is one of the most pressing issues facing humanity, and cities are likely to experience many of the most dangerous effects of climate change. One way that cities aim to adapt to become more resilient to climate change is through the provision of locally produced ecosystem services: the benefits that people get from nature. In cities, these ecosystem services are provided by diverse forms of urban ecological infrastructure (UEI): all parts of a city that include ecological structure and function. While there is a growing body of research touting the multifunctionality of UEI and an increasing number of cities implementing UEI plans, there remain important gaps in understanding how UEI features perform at providing ecosystem services and how the local social-ecological-technological context affects the efficacy of UEI solutions. Inspired by the need for cities to adapt to become more resilient to climate change, this dissertation takes an interdisciplinary approach to understand how diverse UEI features and their ecosystem services are perceived, provided, and prioritized for current and future climate resilience. The second chapter explores how a diverse group of local actors in Valdivia, Chile perceives the city’s urban wetlands and identifies common trade-offs in the perceived importance of different ecosystem services from the wetlands. The third chapter demonstrates species-level differences and trade-offs between common street trees in Phoenix, Arizona in their ability to provide the ecosystem services of both local climate regulation and stormwater regulation. The fourth chapter compares how participatory scenarios from nine cities across the United States and Latin America vary in the degree to which they incorporate UEI and ecosystem services into future visions. The fifth chapter returns focus to Phoenix and illustrates dominant perspectives on the prioritization of ecosystem services for achieving climate resilience and how those priorities change across temporal scales. The dissertation concludes with a synthesis of the previous chapters and suggestions for future urban ecosystem services research. Combined, this dissertation advances understanding of ecosystem services from UEI and highlights the importance of considering trade-offs among UEI features in order help achieve more just, verdant, and resilient urban futures.
Reuse Permissions
  • Downloads
    PDF (8.5 MB)

    Details

    Title
    • Ecosystem Services from Urban Ecological Infrastructure: Perceptions, Performance, and Priorities for Climate Resilient Cities
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Natural Science

    Machine-readable links