Power System Planning for Adverse Climate and Weather Events: Theoretical and Computational Insights for Incorporating Flexible Transmission Technologies
Document
Description
The stable and efficient operation of the transmission network is fundamental to the power system’s ability to deliver electricity reliably and cheaply. As average temperatures continue to rise, the ability of the transmission network to meet demand is diminished. Higher temperatures lead to congestion by reducing thermal limits of lines while simultaneously reducing generation potential. Furthermore, they contribute to the growing frequency and ferocity of devasting weather events. Due to prohibitive costs and limited real estate for building new lines, it is necessary to consider flexible investment options (e.g., transmission switching, capacity expansion, etc.) to improve the functionality and efficiency of the grid. Increased flexibility, however, requires many discrete choices, rendering fully accurate models intractable. This dissertation derives several classes of structural valid inequalities and employs them to accelerate the solution process for each of the proposed expansion planning problems. The valid inequalities leverage the variability of the cumulative capacity-reactance products of parallel simple paths in networks with flexible topology, such as those found in transmission expansion planning problems. Ongoing changes to the climate and weather will have vastly differing impacts a regional and local scale, yet these effects are difficult to predict. This dissertation models the long-term and short-term uncertainty of rising temperatures and severe weather events on transmission network components in both stochastic and robust mixed-integer linear programming frameworks. It develops a novel test case constructed from publicly available data on the Arizona transmission network. The models and test case are used to test the impacts of climate and weather on regional expansion decisions.