Description
Many companies face pressure to deploy flexible compute infrastructures to manage their operations. However, the current developments in cloud and edge computing have created a data processing asymmetry challenge. On the edge, workloads frequently require low-latency responses, contend with connectivity and bandwidth instabilities, may require privacy guarantees, and may perform under limited or high-variance compute resources. In the cloud, workloads tolerate longer latency, expect highly available infrastructure, access high-performance compute resources, and have more power available, but may be further from where the processing results are needed. This compute asymmetry challenge requires a new computational paradigm. In this work, I advance a new computing architecture model, called the Continuum Computing Architecture (CCA), and validate this model with a candidate architecture. CCA is a unifying edge-fog-cloud computing model that provides the following capabilities: (i) a continuum of compute that spans from network-connected edge devices to the cloud – with very low power consumption to high-performance compute; (ii) same architecture with different micro-architectures along this compute continuum – a single RISC-V instruction set architecture with reconfigurable processing units; (iii) portability across all scales – the same program can be run across the continuum with different latencies and power utilizations; and (iv) secure shared memory features are fully-supported – physical memories along the continuum are abstracted to allow edge and cloud to share data in a transparent fashion. The validating architecture has three micro-architectures. The edge micro-architecture, Parmenides, targets accelerator-based edge processing system-on-chips (SoCs). Parmenides includes security features to protect the SoC in uncontrolled environments while adapting its power usage and processing to ambient events. The fog and cloud micro-architectures, Melissus and Zeno, must support application data distribution across the memory of many compute nodes to achieve the desired scale and performance. As a solution, I introduce the Eleatic Memory Model (EMM): a global shared memory architecture with hardware-supported global memory access permissions. All memory accesses are made with a Namespace-based capability scheme that supports improved scalability and memory security. The CCA model addresses several memory-centric security challenges including the misuse of resources, risk to application and data integrity, as well as concerns over authorization and confidentiality.
Download count: 6
Details
Title
- Eleatic: Secure Architecture Across the Edge-to-Cloud Continuum
Contributors
- Ehret, Alan (Author)
- Kinsy, Michel A (Thesis advisor)
- Vrudhula, Sarma (Committee member)
- Shrivastava, Aviral (Committee member)
- Rudd, Kevin (Committee member)
- Gettings, Karen (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2022
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: Ph.D., Arizona State University, 2022
- Field of study: Computer Engineering