Description
Electrolytes play a critical role in electrochemical devices and applications, and therefore design and development of electrolytes with tailored properties are much desired to accommodate variety of operation requirements. Extreme temperatures are considered as one of the challenging environmental conditions,

Electrolytes play a critical role in electrochemical devices and applications, and therefore design and development of electrolytes with tailored properties are much desired to accommodate variety of operation requirements. Extreme temperatures are considered as one of the challenging environmental conditions, especially for devices rely on liquid state electrolytes, rendering failure of operations once the electrolyte systems undergo phase transitions. This work focuses on development of low-temperature iodide-containing liquid electrolyte systems, specifically designed for the molecular electronic transducer (MET) sensors in space applications. Utilizing ionic liquids, molecular liquids, and salts, multiple low-temperature liquid electrolytes were designed with enhancements in thermal, transport, and electrochemical properties. Effects of intermolecular interactions were further investigated, revealing correlations between optimization of microscopic dynamics and improvements of macroscopic characteristics. As a result, three low-temperature electrolyte systems were reported utilizing ethylammonium/water, gamma-butyrolactone/propylene carbonate, and butyronitrile as solvent with ionic liquid, 1-butyl-3-methylimidazolium iodide, and lithium iodide salt. Consequently, the liquidus range of these systems have been extended to -108 ˚C, -120 ˚C, and -152 ˚C, respectively, marking the lowest liquidus temperature of liquid electrolytes to the author’s best knowledge. Moreover, transport properties of designed systems were characterized from 25 to -75 ˚C. Effects of selected cosolvent/solvent on evolutions of transport properties were observed, revealing interplay between two governing mechanisms, ion disassociation and ion mobility, and their dominance at different temperatures. Experimental spectroscopy characterization techniques validated the hypothesized intermolecular interactions between solvent-cation and solvent-anion, complimented by computational simulation results on the complex dynamics between constituent ions and molecules. To support MET sensing technology, the essential iodide/triiodide redox were investigated in developed electrolytes. Effects of different molecular solvents on electrochemical kinetics were elucidated, and steady performances were validated under a properly controlled electrochemical window. Optimized electrolytes were tested in the MET sensor prototypes and showcased adequate functionality from calibration. The MET sensor prototype has also successfully detected real-time earthquake with low noise floor during long term testing at ASU seismology facility. The presented work demonstrates a facile design strategy for task-specific electrolyte development, which is anticipated to be further expanded to high temperatures for broader applications in the future.
Reuse Permissions
  • Downloads
    PDF (4.1 MB)

    Details

    Title
    • Development of Liquid Electrolytes for Extreme Temperatures: Design, Optimization, and Impact of Molecular Interactions
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Chemical Engineering

    Machine-readable links